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Abstract 

The vibrations of rectangular plates with circular ends, including the 

completely free stadium- shaped plate, the long cantilever plate and the 

wide cantilever plate are studied for the first time. Accurate archival 

frequencies and mode shapes are obtained by the Ritz method. In 

comparison to rectangular plates with the same area, the rounded 

rectangular plate has less boundary length and structurally stronger, while 

the frequencies change little. The vibration shapes show distinct flapping 

modes and twisting modes.   
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1. Introduction 

The study of the vibration of plates is essential in structural design. Exact solutions may exist if 

the boundary of the plate can be described by separable coordinates [1]. Otherwise numerical or 

semi- numerical means are necessary [2, 3].  

The aim of the present paper is to study the free vibration of a rectangular plates with circular 

ends. Since the sharp corners of the rectangular plate are absent, this geometry is favorable in 

terms of both strength and material savings. The first case of our study is the completely free 

vibration of the stadium- shaped plate (Figure 1a). Practical applications include solar panels 

orbiting in space [4], large floating marine platforms [5], and lightly supported plates. The 

second case is the cantilever rectangular plates with free circular ends (Figure 1b, 1c). This case 

models cantilever ledges, propeller blades, aircraft wings etc. 

The completely free vibration of circular, elliptic, rectangular, triangular plates have long been 

studied. See Leissa [2, 6] for the earlier works. Square plates with rounded corners were 

considered by Irie et al [7] using conformal mapping and the variational Ritz method. Recently 

Wang [8] studied homotopy shapes in between a rectangle and an ellipse. The last two sources 

used continuous functions to describe the boundary, which do not apply to the shapes studied in 

the present paper. On the other hand the stadium- shaped plate, having straight and circular 

boundaries, is easier to fabricate than elliptic or super-elliptic plates.       

Vibrations of cantilever plates are of interest in the study of wing behavior. Rectangular, 

quadrilateral, triangular plates with one edge clamped and other edges free have been 

investigated [2]. Square or elliptic plates have also been considered [9, 10]. We shall study the 

more difficult cantilever rectangular plate with circular ends.  

This geometry does not conform to separable coordinates. Also the boundary cannot be described 

by a single boundary function. Thus the methods of [7, 8] fail. Finite differences and finite 

elements can be used, but much effort is needed to accommodate the conditions of the curved 
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free edges. We shall use the powerful Ritz method which normally not applicable to piecewise 

continuous boundaries [11]. However, for free vibrations such boundary restrictions are relaxed 

and the Ritz method can be used. 

We are interested in the natural frequencies and the vibration mode shapes of the rectangular 

plate with circular ends, which has never been studied before. 

 
Figure1. (a) The completely free stadium- shaped plate (b) The long cantilever plate (c) The wide cantilever plate.  

2. Method of solution 

First consider the completely free stadium- shaped plate (Figure 1a). Normalize all lengths by the 

half width L, the thin plate vibration equation is [2] 

024  wkw          (1) 

where w is the transverse displacement amplitude, and the normalized frequency is 
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Here   is the frequency,   is the density, h is the thickness, and D is the flexural rigidity. The 

energy functional [12], with zero applied forces or moments, is simplified to  
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Here (x,y) are Cartesian coordinates, the integrals are over the area   and the Poisson ratio   

is set to 0.3 for our computations. The variation or minimization of E yields [13]  

0)( 24  


wdxdywkwDE          (4) 

Thus if w is arbitrary inside , Eq.(1) is recovered. For the Ritz method, let the displacement be 

expressed in a linear sum of Ritz functions i . The Ritz functions are complete and have no 

restrictions inside and on the free edges of the plate.   


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
1

),( yxcw ii           (5) 

Truncate Eq.(5) to N terms and minimize E with respect to the constant coefficients ic . After 
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some work we find 
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For non-trivial solutions, we set the determinant to zero: 

02  ijij BkA          (8) 

Eq.(8) is the characteristic equation for the frequencies k. For each frequency, the coefficients ic  

(up to a constant) can be obtained from Eq.(6) and the mode shapes from Eq.(5).  

For the completely free plate in Fig.1a, let the normalized dimensions of the rectangle be 2a by 2, 

with semi- circular ends of radius 1. Cartesian coordinates are placed at the centroid. Due to 

geometric symmetry, the vibration modes can only be the following four types: symmetric in 

both x and y directions (SS), symmetric in the x direction but anti-symmetric in the y direction 

(SA), anti-symmetric in the x direction but symmetric in the y direction (AS), or anti-symmetric 

in both directions (AA).  

Let the Ritz functions be the polynomial set 

},,,,,,,,,,,,,,1{}{ 86244268642246422422 yyxyxyxxyyxyxxyyxxyxq    (9) 

For the SS modes, we set q=1, for the SA modes q=y, for the AS modes q=x, and for the AA 

modes q=xy. The number of terms N taken are the highest homogeneous powers, i.e. 3, 6, 10, 15, 

21, 28, 36, etc. Table 1 shows the convergence rate is fairly fast. That N=28 would be sufficient 

for convergence. 

 
Table 1. Typical convergence of frequency k. Empty cells denote the values have converged. 

N a = 0.25 

7th mode AA 

a = 1 

6th mode SS 

a = 2 

3rd mode AS 

a = 5 

5th mode SA 

10 16.157 6.0306 1.8252 1.1855 

15 16.150 7.8747 1.8227 1.1853 

21 16.148 7.8535 1.8227 1.1853 

28 16.147 7.8505   

36 16.147 7.8504   

 

An accuracy test is the free vibration of a circular plate (a=0) for which an exact solution exists. 

The frequencies of the completely free circular plate is [1] 
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Here k , nn IJ ,  are Bessel functions and modified Bessel functions of the first kind, and n 
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is the number of diametrical nodal lines. Table 2 shows the convergence of our method to the 

exact values from Eq.(10). It is seen that our method is accurate to all five digits.   

 

Table 2. Convergence of the frequencies for the completely free circular plate. Empty cells denote the values have 

converged. Exact values are from Eq.(10). 

N  SS  AA  SS  AS  SA  AS  SA 

10 5.3583 5.3583 9.0035 12.439 12.439 20.483 20.475 

15 5.3583 5.3583 9.0031 12.439 12.439 20.475 20.475 

21 5.3583 5.3583 9.0031   20.475  

28 5.3583 5.3584      

36 5.3584 5.3584      

Exact 5.3584 5.3584 9.0031 12.439 12.439 20.475 20.475 

 

For the long cantilever plate of Figure 1b, the boundary is clamped on the minor axis at x = 0. 

Since there is no symmetry in the x direction, the Ritz functions are 

  },,,,,,,,,,,,,,,1{}{ 6422464235422423222 yyxyxxxyyxxyyxxxyxyxxqx       (11) 

here q =1 if the mode is symmetrical in y (S), and q=y if it is anti- symmetrical in y (A).  

For the wide cantilever plate of Fig.1c, the boundary is clamped on the major axis at y=0. The 

Ritz functions are taken as 

   },,,,,,,,,,,,,,,1{}{ 6422464235422423222 yyxyxxyxxyyyyxxyxyyxyqy   (12) 

where q =1 if the mode is symmetrical in x (S), and q=x if it is anti-symmetrical in x (A). The 

convergence for both cantilever plates are similar to the completely free plate. 

Another comparison is the semi- circular cantilever plate. The only published report is due to 

McGee et al [14] who also used a Ritz method to study the circular sector plate clamped at the 

straight edges. A special sector is the semi-circle which McGee et al [14] found the first six 

frequencies. Table 3 shows the differences between our results and theirs are less than 0.05%. On 

the other hand, Westmann [15] used a one-term Rayleigh quotient and obtained a less satisfactory 

5.66 for the fundamental frequency.  

 
Table 3. Comparison of the first six frequencies with the results of McGee et al [14] for the semi-circular cantilever 

plate. 

present 4.5384 9.3561 17.229 27.016 27.581 40.264 

Ref.[14] 4.5399 9.3519 17.222 27.037 27.565 40.235 

               

3. Results  

Table 4 shows the first eight frequencies of the completely free rectangular plate with 

semicircular ends. The frequencies for a = 0 (circle) confirm Eq.(10). Some frequencies for the 

circular plate are the same when rotated a half period, for example AA and SS, also AS and SA.    
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Table 4 First eight frequencies of the completely free stadium- shaped plate. Aspect ratio is a+1. Subscripts denote 

mode shape. 

a 0 0.25 0.5 1 2 3 4 5 

 

 

 

k 

5.358SS 3.890SS 2.789SS 1.564SS 0.671SS 0.368SS 0.231SS 0.159SS 

5.358AA 3.946AA 3.082AA 2.108AA 1.274AA 0.911AA 0.636AS 0.437AS 

9.003SS 7.265SS 6.605SS 4.094AS 1.823AS 1.009AS 0.709AA 0.580AA 

12.44AS 9.132AS 6.871AS 4.701SA 2.772SA 1.901SA 1.244SS 0.856SS 

12.44SA 9.239SA 7.103SA 6.015SS 3.493SS 1.962SS 1.460SA 1.185SA 

20.48AS 14.21AS 11.07AS 7.850SS 4.474AA 3.036AA 2.048AS 1.413AS 

20.48SA 16.15AA 12.42AA 8.074AA 5.539AS 3.208AS 2.290AA 1.838AA 

21.84SS 16.27SS 12.49SS 8.322AS 5.884SS 4.362SA 3.044SS 2.108SS 

 

The corresponding mode shapes are also obtained, excluding spurious frequencies. Figure 2 

shows the results. Note that the fundamental mode is always SS with two transverse nodal curves. 

The second mode is AA but switches to AS between a =3 and a =4. Higher modes show more 

frequent switching of the mode orders. For very high aspect ratios we expect the modes alternate 

between SS and AS with transverse nodal curves. The frequencies decrease with increased aspect 

ratio or area. 

 

Figure 2. First eight vibration modes of the completely free stadium- shaped plate. Dashed lines denote nodal curves. 

From left: a = 0, 0.5, 1, 3, 5. 
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The frequencies of the long cantilever plate are given in Table 5. The subscript S denotes 

symmetry in the y direction, or the vibration is mainly up-and-down along the major axis. The 

subscript A denotes anti-symmetry in the y direction, or there exists a twisting motion about the x 

axis.   

Table 5 First eight frequencies of the long cantilever plate. Aspect ratio is (a+1)/2. Subscripts denote mode shape. 

a 0 0.5 1 2 3 4 5 

 

 

 

k 

4.5384S 1.939S 1.044S 0.438S 0.238S 0.149S 0.102S 

9.3561A 4.579A 2.845A 1.550A 1.051A 0.784A 0.631S 

17.229S 9.208S 5.675S 2.597S 1.448S 0.916S 0.635A 

27.016S 13.35S 9.211S 5.239A 3.449A 2.534S 1.752S 

27.581A 15.20A 9.790A 6.482S 3.944S 2.564A 2.007A 

40.264S 24.41A 14.62S 7.619S 6.381S 4.776A 3.370S 

41.950A 31.37A 18.62A 10.34A 6.606A 4.888S 3.648A 

55.191A 32.34S 19.87S 11.40S 7.547S 6.172S 4.383S 

 

 

Figure 3. First eight vibration modes of the long cantilever plate. The left edge is clamped. Dashed lines denote 

nodal curves. From left: a = 0, 1, 3, 5. 

Figure 3 shows the vibrational modes for the long cantilever plate. The plate is clamped at the 

left straight side while the remaining boundaries are free. The fundamental mode has no interior 
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nodal curves, or the plate has a flapping motion. The second mode is anti-symmetric (twisting) 

for small a but switches to the symmetric (up-down) mode when a =5. More switches occur for 

higher modes. For larger aspect ratios, we expect the vibrations are dominated by the symmetric 

modes. Figure 4 shows the three-dimensional mode shapes for a long cantilever plate. Note the 

twisting vibrations of the third and fifth modes. 

 

Figure 4. Three-dimensional vibration modes of the long cantilever plate (a=5). 

The left edge is clamped. Note the first, second, and fourth modes are flapping modes, while the third and fifth 

modes are twisting modes.  

When a = 0, it is the semicircular plate clamped at the straight edge. Figure 5 shows some 

three-dimensional displacements of the semi- circular cantilever plate. Note the second and fifth 

modes are twisting vibrations. 

For the wide cantilever plate of Figure1c, the plate is clamped on the major axis (x-axis) while 

the rest of the boundaries are free. The aspect ratio is 2(a+1). Table 6 shows the first eight 

frequencies. 

Figure 6 shows the mode shapes. Note that for larger aspect ratios the nodal curves are mostly 

transverse to the (clamped) major axis. Figure 7 shows typical three-dimensional vibration 

modes. 
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Figure 5. First five modes of the vibration of the semi-circular cantilever plate. 

The first, third and fourth modes are symmetric modes (with respect to the bisecting axis), and the second and fifth 

modes are anti-symmetric. 

 

Table 6 First eight frequencies of the wide cantilever plate. Aspect ratio is 2(a+1). Subscripts denote mode shape. 

a 0 0.5 1 2 3 

 

 

 

k 

4.5384S 3.996S 3.805S 3.661S 3.605S 

9.3561A 6.253A 5.048A 4.200A 3.909A 

17.229S 10.32S 7.441S 5.255S 4.487S 

27.016S 15.96A 10.84A 6.823A 5.360A 

27.581A 22.39S 15.15S 8.883S 6.529S 

40.264S 22.33S 20.17A 11.38A 7.919A 

41.950A 32.10A 23.12S 14.77S 10.04S 

55.191A 37.03S 25.88A 17.90A 11.49A 

 

 



C.Y. Yang                    Vibration and Acoustics Research Journal                           Vol. 2, No. 1; 2020 

 

 

9 

 
Figure 6. First eight vibration modes of the wide cantilever plate. The bottom edge is clamped. Dashed lines denote 

nodal curves. From left: a = 0, 1, 3, 5. 

 

 

 

 

Let us compare the vibration of rectangular plates and that of rectangular plates with rounded 

ends. Let the area be the same, such that the effective surface, be it solar panel or lifting wing, be 

of same area. For the same width, the rectangle length is c, related to the rounded rectangle 

by 4/ ac . Table 7 shows a comparison of the first four frequencies for the completely free 

plate. Table 8 shows the comparison for the cantilever plates. 

Table 7 Comparison of the frequencies of the completely free rounded rectangular plate and the rectangular plate of 

same area (with asterisk). 

a = 0.5 a = 1 a = 2 a = 3 a = 4 a = 5 

2.789 

3.220* 

1.564 

1.683* 

0.671 

0.691* 

0.368 

0.374* 

0.231 

0.234* 

0.159 

0.160* 

3.082 

2.614* 

2.108 

1.867* 

1.274 

1.181* 

0.911 

0.862* 

0.636 

0.647* 

0.437 

0.442* 

6.605 

5.584* 

4.094 

4.561* 

1.823 

1.920* 

1.009 

1.037* 

0.709 

0.679* 

0.580 

0.560* 

6.871 

7.464* 

4.701 

4.175* 

2.772 

2.509* 

1.901 

1.793* 

1.244 

1.275* 

0.856 

0.870* 
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Figure 7. First five modes of the vibration of the wide cantilever plate (a = 2). 

The first, third and fifth modes are symmetric, and the second and fourth modes are anti-symmetric. 

 

Table 8. Comparison of the frequencies of the cantilever rounded rectangular plate and the cantilever rectangular 

plate of same area (with asterisk).  

a = 0.5 a = 1 a = 2 a = 3 a = 4 a = 5 

1.939 

2.111* 

1.044 

1.092* 

0.438 

0.447* 

0.238 

0.241* 

0.149 

0.150* 

0.102 

0.103* 

4.579 

3.778* 

2.845 

2.45* 

1.550 

1.417* 

1.051 

0.967* 

0.784 

0.755* 

0.631 

0.639* 

9.208 

8.352* 

5.675 

6.482* 

2.597 

2.759* 

1.448 

1.498* 

0.916 

0.936* 

0.635 

0.612* 

13.35 

13.264* 

9.211 

7.352* 

5.239 

4.831* 

3.449 

3.231* 

2.534 

2.628* 

1.752 

1.795* 

 

Note that if the edges are rounded, the fundamental (symmetric) frequency is slightly decreased, 
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while the second frequency (usually antisymmetric) may be slightly increased or decreased. The 

differences in frequencies become even smaller when the aspect ratio becomes larger. Thus 

rounding the ends has definite advantages in increased structural strength while the frequency 

change little.    

4. Discussions and conclusion 

The boundary conditions of a free edge on a plate are zero moment and zero shear. From e.g. [12, 

13] the expressions are 
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here )( xn , )( yn are components of the unit normal, and s is the unit tangent direction.  These 

boundary conditions present serious challenges if they are to be enforced, for methods such as 

finite differences, finite elements [16], infinite series expansions [17] or discrete singular 

convolution [18]. This is probably the reason these methods are rarely used for plates with 

curved free edges, even for the semi- circular cantilever plate. However, the present modified 

Ritz method automatically satisfies the free vibration boundary conditions [11], thus is well 

suited for free (curved) edge problems. Note that unlike the rectangular or elliptic geometry, the 

Ritz method cannot be used for the stadium geometry if the edges are clamped or 

simply-supported, due to the circular arc boundary.  

Using proper mode classifications, the first eight frequencies and mode shapes are computed. For 

the completely free stadium- shaped plate, the fundamental mode always has two nodal curves 

transverse to the major axis. The second mode has perpendicular nodal lines along both axes for 

a<3.5 but switches to three transverse nodal curves for a>3.5. There are numerous switches for 

the higher modes. For the long cantilever plate the fundamental mode has no internal nodal 

curves, i.e. a flapping motion. The second mode is a twisting oscillation for a< 4.95, but switches 

to flapping (with one transverse nodal curve) for a>4.95. For the wide cantilever plate the 

fundamental mode is always flapping, and the second mode is always twisting.  

The contributions of the present work include firstly the accurate archival frequencies of the 

important stadium-shaped plate, and secondly the detailed descriptions of the vibration modes. 

These frequencies and mode shapes, obtained by our efficient modified Ritz method, are 

essential in the design of completely free or cantilevered plates.  
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