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Abstract 

Evolution of trains and achievement of very high speeds led researchers to 

study the influence of these speeds on the dynamic behavior of technical 

works that undergo developed stresses. In this paper, the effect of the 

traveling waves on the dynamic behavior of a bridge or of a beam on elastic 

foundation was studied. Using the results obtained in our previous 

publication  i.e. the formulae giving the expressions of eigenfrequencies and 

of shape functions, we used the complete model, which is governed by 

Timoshenko’s equation for the study of the forced motion of a bridge or of a 

beam on elastic foundation under the action of moving loads with regular to 

very high speeds. A 2-DOF model is considered for the solution of the bridge 

or the beam while the theoretical formulation is based on the continuum 

approach which has been used in literature to analyze such bridges. 

Keywords: Wave propagation; Bridges’ dynamic; Critical speeds; Traveling 

waves. 

Nomenclature 
A the cross sectional area 

b beam with 

E modulus of elasticity 

G shear modulus of elasticity 

J moment of inertia 

k Winkler’s factor 

k΄ Timoshenko’s shear coefficient 

L beam length 

m mass per unit length 

p the external loading 

t time 

Tn time function 

υΜ , υQ moment and shear velocities of waves, 

respectively 

w beam deformation 

β damping coefficient 

λ beam slenderness ratio 

ρ specific weight of beam 

Χn shape function 

ωn eigenfrequencies 

1. Introduction

This paper is the sequel of paper [1], in which the influence of traveling waves on 

eigenfrequencies and critical speeds on a bridge or a beam on elastic foundation was studied. 

Many solution techniques have been reported [1-10] for structures with specific geometrical 

characteristics and finite, periodic or semi-infinite boundary conditions.  

Many research papers use F.E.M. to analyze the influence of waves on an elastic solid [11-

16], while several researchers studied this problem through experimental investigation [17-

24]. Among many frequency domain methods, the spectral element method has been proved 

suitable for analysis of waves’ propagation in real engineering structures. This spectral 

element method uses the exact solution of differential equations which governs the problem. 

It has to be mentioned that there are studies on the behavior of traveling waves in various 

conditions such as the propagation along a rough thin-elastic beam or the study of the 

reflection and transmission of waves on an elastic beam [25,27]. Lastly, a lot of researchers 

studied the influence of the wave propagation on plates [28], underground power houses [29], 

concrete bridges [30], metal beams [31] and cable-stayed bridges [32].   
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Flügge demonstrated [33], that an impulsive disturbance on a beam involving both shear and 

moment will result in two wave trains, i.e. one that propagates with the shear wave velocity 

= /GkQ   and another that propagates with the moment-wave velocity = /EM   along 

the beam (ρ being the mass per unit volume, and k’ the corrective shear coefficient of 

Timoshenko [35, 36, 37]). It has been observed that if the cross-section of a beam is such to 

have EGk = , then the velocities Q  and M  will be equal and the two types of disturbances 

will travel together. In general, these two types of disturbance will travel with different 

velocities. 

To study the aforementioned very interesting problems, numerous mechanical models of 

beams have been presented. Three mechanical models of beams have been presented in 

which the main parameters are the lumped masses. These models were first proposed and 

studied by Schirmer [34].  

In this paper the effect of the traveling waves on the dynamic behavior of a bridge or of a 

beam on elastic foundation is studied. Using the results obtained in [1] i.e. the formulae 

giving the expressions of eigenfrequencies and of shape functions, we use the complete 

model which is governed by Timoshenko’s equation for the study of the forced motion of a 

bridge or of a beam on elastic foundation under the action of moving loads moved with 

regular to very high speeds.    

The evolution of trains and the achievement of very high speeds lead researchers to study the 

influence of these speeds on the dynamic behavior of the technical works that undergoing the 

developed stresses. A 2-DOF model is considered for the solution of the bridge or the beam 

while the theoretical formulation is based on the continuum approach which has been used in 

literature to analyze such bridges. Analytical results are presented in graphical form (plots 

and diagrams) showing the influence of traveling waves on the dynamic deflection of a 

bridge made from steel or concrete. Lastly a finite beam on elastic foundation of Winkler 

type is also examined. 

2. The bridge 

2.1. The Free Vibrating Bridge  

The complete equation of Timoshenko beam is given by   
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According to [1], from equation (2) we get the following expressions for the eigenfrequencies 

and shape functions of a simply supported one-span bridge of length L 
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where = /EM , = /GkQ  are the moment and the shear wave velocities respectively and 

λ is the slenderness of the bridge.   
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2.2. The Forced Vibrating Bridge 

Neglecting in Eq(1), as very small, the terms containing the factors AGk/Im y   and AGk/Iy  , 

and taking  into account the bridge’s damping, the equation of forced vibration becomes 
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We are searching for a solution of the form 
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where Xn(x) represent the shape functions of the bridge and Tn(t) the unknown time functions 

under determination. For the one span beam, Xn is given by Eq (3b). 

Eq (4), because of Eq (5), becomes 
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Multiplying last eq.  by 
L

xn
sin


 , integrating from 0 to L and taking into account the 

orthogonality condition, Eq(6a) results to 
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The Using of the following expressions which are valid: 
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Leads to 
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Therefore, equation (6b) becomes 
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and ωn from equation (3a). 

The solution of equation (7), is given by Duhamel’s integral as follows. 
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3. Finite Beam on Elastic Foundation 

Let us consider now beam AB of figure 1, which is based on an elastic foundation of Winkler 

type. According to classic theory, the force per unit length of the beam reacting to the 

external loading is 

wkP =                                           (10) 

 

 
L 

A  B  

w    

x    

 
Figure 1. Finite beam on elastic foundation. 
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where k is the so-called Winkler factor. Let us determine this factor. 

It has been experimentally proven that the pressure σz under a foundation of square surface in 

relation to the depth z, is given by the curve of figure 2 [38].  

 

0 0.5 p 1.0 p 

1 

2 

3 

 
Figure 2. σz in relation to the depth z (experimental curve). 

From this diagram, we observe that the pressure σz for depth greater than 3.5 meters is 

practically equal to zero. 

There are many studies that try to determine an algebraic expression of Winkler’s factor k. A 

list of these efforts can be found in [39]. 

Since the present study has no geotechnical ambitions but only aims to use a qualitative 

expression of factor k, we will use the rather simple expression given by Vesic [40]. 

In [34], Vesic tried to develop a formula giving k, where instead of equating bending 

moments, he equated the maximum displacements of the beam. Vesic concluded to the 

following empirical formula giving k: 
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where Es is the modulus of elasticity of the soil, νs is the Poisson’s ratio of the soil, b is the 

beam width, and EIy is the bending rigidity of the beam. 

3.1. The Free Vibrating Beam 

Introducing the reaction of foundation into equation (1) we get: 
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where the terms of higher order have been neglected.   

The equation of free vibrating beam is: 
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Following a procedure similar to the one of section 3 and considering boundary conditions 

which prevent the subsidence of beam’s edges, we conclude to the following relations giving 

the eigenfrequencies and shape functions [1]:  
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3.2. The Forced Vibrating Beam 

Neglecting in Eq(1), as very small, the terms containing the factors AGk/Im y   and AGk/Iy  , 

and taking into account the beam’s damping and the reaction of foundation, the equation of  

forced vibration becomes: 
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We are searching for a solution of the form 
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where Xn(x) represent the shape functions of the bridge and Tn(t) the unknown time functions 

which are under determination. For one span beam, Xn is given by Eq (14b). 

Using Eq (14) and (16), Eq (15) becomes: 
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Multiplying last equation by 
L

xn
sin


, integrating from 0 to L and taking into account the 

orthogonality condition, equation (17) becomes  
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The above, because of the expressions (6c) and (6d), becomes 
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where βn, An, Bn given by equation (8) and  
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The solution of (19) is given by Duhamel’s integral of equation (9). 

4. Numerical Results and Discussion 

Two are the main materials used in bridge engineering which are Steel and Concrete and the 

main used cross-sections for decks are the orthogonal, the I open sections and the box 

(closed) cross-sections. The materials, cross-sections’ data, the resulting Timoshenko’s 

coefficients and wave propagation speeds are shown in the following Table 1.    
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                          Table 1. Speeds of moment and shear waves for various types of cross sections. 

 

Material 

E 

dN/m2 

G 

dN/m2 

Poisson 

ratio   ν 

ρ 

kg/m3 

Cross- 

section 

 

k’ 

υΜ 

m/sec 

υQ 

m/sec 

 

Steel 

 

2.1×1010 

 

0.8×1010 

 

0.30 

 

800 
 

0.46 5150 2144 

 0.65 5150 2550 

 

 

 

Concrete 

 

 

 

 

0.35×1010 

 

 

 

0.01×1010 

to 

0.20×1010 

 

 

 

 

0.20 

 

 

 

 

240 

 

 
 

 

0.83 

 

3818 

588 

to 

2630 

 

 
 

 

0.46 

 

3818 

438 

to 

1957 

 

 
 

 

0.65 

 

3818 

540 

to 

2327 

 

Let us consider now a simply supported bridge made of steel or concrete with length L 

ranging from 20 to 80 meters. The other data of the bridge is shown in the following table 2. 

Table 2. Shear Timoshenko coefficient and slenderness ratio for various lengths and cross-sections of the beam. 

Material k' υΜ υQ L Iy A m λ 

 

 

Steel 

 

 

 
 

0.46 

 

5150 

 

2144 

80 7.8 1.27 1000 30 

60 2.22 0.77 600 36 

40 0.06 0.51 400 97 

 

 
      0.65 

 

5150 

 

2550 

80 7.8 1.27 1000 30 

60 2.22 0.77 600 36 

40 0.06 0.51 400 97 

 

 

 

Concrete 

 
0.83 

 

3820 

588 

to 

2630 

40 1.0 2.90 700 69 

20 0.08 1.25 300 91 

 

 
 

0.46 

 

3820 

 

438 

to 

1957 

60 1.50 2.50 600 80 

40 1.25 2.00 480 50 

20 0.45 1.00 240 30 

 

 
      0.65 

 

3820 

 

540 

to 

2327 

60 1.50 2.50 600 80 

40 1.25 2.00 480 50 

20 0.45 1.00 240 30 

 

For a beam on elastic foundation we have chosen a concrete beam, having orthogonal cross-

section with characteristics shown in Table 1 (line 4) and Table 2 (lines 7 and 8). 

Table 3. Soil characteristics. 

 

 

 

 

 

 

SOIL Es  dN/cm2 νs 

Sand 500 – 800 0.15 – 0.4 

Dense sand 160 – 500 0.15 

Argil sand 100 – 200 0.15 

Mortal 15 – 150 0.3 – 0.35 

Thin argil 15 – 150 0.1 – 0.3 

Fat argil 15 – 150 0.1 – 0.3 

Turf 1 – 5 0.3 – 0.4 

Organic clays 0.5 - 4 0.4 – 0.5 
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Soil characteristics of different grades are given in the following table 3. 

The bridges and beams considered are subject to loads, moving with speeds v=105 km/h 

(speed of usual trains), v=300 km/h (fast trains) and v=540km/h (super fast trains).  

4.1. Bridge of Steel Under Moving Loads 

Applying the formulae of section 2 we obtain the following plots (figures 3 to 8) for steel 

bridges with open or closed (box) cross-sections and lengths L=80, 60, and 40 meters.  

0.5 1 1.5 2 2.5

t

0.002

0.004

0.006

0.008

w

 
Figure 3. The deformation w (meters) of the middle of the bridge relating to time t (seconds), according to the 

improved formulae (red) and to the classical ones (black) for open cross-section, length L=80mand various 

speeds: (. . . . ) 105 km/h,  (- - - ) 300km/h,  ( ____ )  540 km/h. 

From the above plot of figure 3, it can easily be seen that, for speeds 105 and 300 km/h, the 

improved formulae give smaller deformations than the classic ones, but for super fast speeds 

happens the opposite. The difference for the speed of 105 km/h amounts to about -12%, for 

the speed of 300 km/h amounts to about -8%, while for the speed of 540 km/h amounts to 

about +7.5%. 

0.5 1 1.5 2

t

0.0025

0.005

0.0075

0.01

0.0125

0.015

w

 
Figure 4.  The deformation w (meters) of the middle of the bridge relating to time t (seconds), according to the 

improved formulae (red) and to the classical ones (black) for open cross-section, length L=60mand various 

speeds: (. . . .) 105 km/h,  (- - - ) 300km/h,  ( ____ )  540 km/h. 

From the above plot of figure 4, it can easily be seen that the improved formulae give greater 

deformations than the classic ones for any speed. The difference for the speed of 105 km/h 

amounts to about +5%, for the speed of 300 km/h amounts to about +1.5% while for the 

speed of 540 km/h amounts to about +4.5%. 
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0.2 0.4 0.6 0.8 1 1.2

t

0.05

0.1

0.15

w

 
Figure 5. The deformation w (meters) of the middle of the bridge relating to time t (seconds), according to the 

improved formulae (red) and to the classical ones (black) for open cross-section, length L=40mand various 

speeds: (. . . . ) 105 km/h,  (- - - ) 300km/h,  ( ____ )  540 km/h. 

From the above plot of figure 5, it can easily be seen that the improved formulae give smaller 

deformations than the classic ones for any speed. The difference for the speed of 105 km/h 

amounts to about -35%, for the speed of 300 km/h amounts to about -30% and for the speed 

of 540 km/h amounts to about -27%. 

0.5 1 1.5 2 2.5

t

0.002

0.004

0.006

0.008

w

 
Figure 6:  The deformation w (meters) of the middle of the bridge relating to time t (seconds), according to the 

improved formulae (red) and to the classical ones (black) for open cross-section, length L=80mand various 

speeds: (. . . .) 105 km/h,  (- - - ) 300km/h,  ( ____ )  540 km/h. 

From the above plot of figure 6, it can easily be seen that the improved formulae give smaller 

deformations than the classic ones for any speed. The difference for the speed of 105 km/h 

amounts to about -15%, for the speed of 300 km/h amounts to about -12% while for the speed 

of 540 km/h amounts to about -15%. 

0.5 1 1.5 2

t

0.0025

0.005

0.0075

0.01

0.0125

0.015

w

 
Figure 7.  The deformation w (meters) of the middle of the bridge relating to time t (seconds), according to the 

improved formulae (red) and to the classical ones (black) for open cross-section, length L=60mand various 

speeds: (. . . .) 105 km/h,  (- - - ) 300km/h,  ( ____ )  540 km/h. 
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From the above plot of figure 7, it can easily be seen that the improved formulae give greater 

deformations than the classic ones for any speed.  The difference for the speed of 105 km/h 

amounts to about +6%, for the speed of 300 km/h amounts to about +3% while for the speed 

of 540 km/h amounts to about +7%. 
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0.05
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0.15

w

 
Figure 8. The deformation w (meters) of the middle of the bridge relating to time t (seconds), according to the 

improved formulae (red) and to the classical ones (black) for open cross-section, length L=40mand various 

speeds: (. . . .) 105 km/h,  (- - - ) 300km/h,  ( ____ )  540 km/h. 

From the above plot of figure 8, it can easily be seen that the improved formulae give smaller 

deformations than the classic ones for any speed. The difference for the speed of 105 km/h 

amounts to about -38%, for the speed of 300 km/h amounts to about -35% and for the speed 

of 540 km/h amounts to about -30%. 

4.2. Bridge of Concrete Under Moving Loads 

Applying the formulae of section 2 we obtain the following plots of figures 9 to 14 for 

concrete bridges with open or closed (box) cross-sections and lengths L=60, 40, and 20 

meters.  

The differences between concrete bridges with open and closed cross-sections but with the 

same υQ are negligible (<0.3%), while the differences become noticeable for different υQ 

(different concrete quality), as it can be seen in the diagrams of figures 9 to 14.  

0.5 1 1.5 2
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w

 
Figure 9. The deformation w (meters) of the middle of the bridge relating to time t (seconds), according to the 

improved formulae (red) and to the classical ones (black) for open or box cross-section, length L=60m,υQ =1900 

and  various speeds:  (. . . . ) 105 km/h,  (- - - ) 300km/h,  ( ____ )  540 km/h. 

From the above plot of figure 9, we can easily see that the improved formulae give smaller 

deformations than the classic ones for any speed. The difference for the speed of 105 km/h 
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amounts to about -10%, for the speed of 300 km/h amounts to about -18% and for the speed 

of 540 km/h amounts to about -16%. 

0.2 0.4 0.6 0.8 1 1.2
t
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w

 
Figure 10. The deformation w (meters) of the middle of the bridge relating to time t (seconds), according to the 

improved formulae (red) and to the classical ones (black) for open or box cross-section, length L=40m,υQ =1900 

and  various speeds:  (. . . . ) 105 km/h,  (- - - ) 300km/h,  ( ____ )  540 km/h. 

From the above plot of figure 10, we can easily see that the improved formulae give smaller 

deformations than the classic ones for any speed. The difference for the speed of 105 km/h 

amounts to about -15%, for the speed of 300 km/h amounts to about -17% and for the speed 

of 540 km/h amounts to about -20%. 

0.1 0.2 0.3 0.4 0.5 0.6
t
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0.015
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w

 
Figure 11. The deformation w (meters) of the middle of the bridge relating to time t (seconds), according to the 

improved formulae (red) and to the classical ones (black) for open or box cross-section, length L=20m,υQ =1900 

and  various speeds:  (. . . . ) 105 km/h,  (- - - ) 300km/h,  ( ____ )  540 km/h. 

From the above plot of figure 11, we can easily see that the improved formulae give smaller 

deformations than the classic ones for any speed. The difference for the speed of 105 km/h 

amounts to about -13%, for the speed of 300 km/h amounts to about -14% and for the speed 

of 540 km/h amounts to about -14%. 

From the plot of figure 12, we can easily see that the improved formulae give smaller 

deformations than the classic ones for any speed. The difference for the speed of 105 km/h 

amounts to about -3%, for the speed of 300 km/h amounts to about -9% and for the speed of 

540 km/h amounts to about -5%. 

From the plot of figure 13, we can easily see that the improved formulae give smaller 

deformations than the classic ones for any speed. The difference for the speed of 105 km/h 

amounts to about -15%, for the speed of 300 km/h amounts to about -17% and for the speed 

of 540 km/h amounts to about -15%. 
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Figure 12. The deformation w (meters) of the middle of the bridge relating to time t (seconds), according to the 

improved formulae (red) and to the classical ones (black) for open or box cross-section, length L=60m,υQ =500 

and  various speeds:  (. . . . ) 105 km/h,  (- - - ) 300km/h,  ( ____ )  540 km/h. 
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Figure 13. The deformation w (meters) of the middle of the bridge relating to time t (seconds), according to the 

improved formulae (red) and to the classical ones (black) for open or box cross-section, length L=40m,υQ =500 

and  various speeds:  (. . . . ) 105 km/h,  (- - - ) 300km/h,  ( ____ )  540 km/h. 
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Figure 14. The deformation w (meters) of the middle of the bridge relating to time t (seconds), according to the 

improved formulae (red) and to the classical ones (black) for open or box cross-section, length L=20m,υQ =500 

and  various speeds:  (. . . . ) 105 km/h,  (- - - ) 300km/h,  ( ____ )  540 km/h. 

From the above plot of figure 14, we can easily see that the improved formulae give smaller 

deformations than the classic ones for any speed. The difference for the speed of 105 km/h 

amounts to about -8%, for the speed of 300 km/h amounts to about -6% and for the speed of 

540 km/h amounts to about -8%. 

4.3. Beam on Elastic Foundation 

Applying the data in Table 3 and according to the formulae of section 4 one can see that the 
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coefficient k of Winkler ranges from 0.222×104 to 5.64×106. 

Applying the formulae of section 3, we obtain the following plots of figures 15 to 18 for a 

beam (of dimensions b = 2m, and h = 0.5m), on elastic foundation of thickness H = 2m, for 

soil of mortal with Es = 50 dn/cm2, νs = 0.15 and ρs =190 kg/m3 and k = 0.279×106.    
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Figure 15. The deformation w (meters) of the middle of the beam relating to time t (seconds), according to the 

improved formulae (red) and to the classical ones (black) for rectangular cross-section, length L=40m, λ=277, 

υQ =1900 and  various speeds:  (. . . . ) 105 km/h,  (- - - ) 300km/h,  ( ____ )  540 km/h. 

From the above plot of figure 15, we see that the improved formulae give greater 

deformations than the classic ones for any speed. The difference for the speed of 105 km/h 

amounts to about +0.35%, for the speed of 300 km/h amounts to about +0.34% and for the 

speed of 540 km/h amounts to about +0.32%. 
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Figure 16. The deformation w (meters) of the middle of the beam relating to time t (seconds), according to the 

improved formulae (red) and to the classical ones (black) for rectangular cross-section, length L=40m λ=277, υQ 

=500 and  various speeds:  (. . . . ) 105 km/h,  (- - - ) 300km/h,  ( ____ )  540 km/h. 

From the above plot of figure 16, we see that the improved formulae give greater 

deformations than the classic ones for any speed. The difference for the speed of 105 km/h 

amounts to about 0%, for the speed of 300 km/h amounts to about +0.01% and for the speed 

of 540 km/h amounts to about +0.012%. 

From the plot of figure 17, we see that the improved formulae give greater deformations than 

the classic ones for any speed. The difference for the speed of 105 km/h amounts to about -

0.01%, for the speed of 300 km/h amounts to about ~0% and for the speed of 540 km/h 

amounts to about +0.03%.     
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Figure 17. The deformation w (meters) of the middle of the beam relating to time t (seconds), according to the 

improved formulae (red) and to the classical ones (black) for rectangular cross-section, length L=40m υQ =500 

and  various speeds:  (. . . . ) 105 km/h,  (- - - ) 300km/h,  ( ____ )  540 km/h. 
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Figure 18. The deformation w (meters) of the middle of the beam relating to time t (seconds), according to the 

improved formulae (red) and to the classical ones (black) for rectangular cross-section, length L=20m υQ =500 

and  various speeds:  (. . . . ) 105 km/h,  (- - - ) 300km/h,  ( ____ )  540 km/h. 

From the above plot of figure 18, we see that the improved formulae give greater 

deformations than the classic ones for any speed. The difference for the speed of 105 km/h 

amounts to about -1.2%, for the speed of 300 km/h amounts to about +3.6% and for the speed 

of 540 km/h amounts to about +1.3%. 

5. Conclusions 

From the diagrams and plots of section 4, we conclude the following. 

5.1. Dynamic Behavior of Bridges  

a) For steel bridges using the exact theory we have the following differences on deformations 

compared to the ones got by the classic theory: 

     For L = 80m, speed 105 km/h, open cross-section  +12%,    box cross-section  -15% 

                               “    300   “         “       “        “       -  8%,       “      “         “       -12% 

                               “    540   “         “       “        “       -  7.5%,       “      “         “    -15% 

     For L = 40m,        “    105   “         “       “        “      + 5%,       “      “         “        + 6% 

                               “    300  “         “       “        “       + 1.5%      “       “         “      +3% 

                               “    540  “         “       “         “      +  4.5%     “       “         “      +7% 

     For L = 20m         “    105  “          “       “        “      - 35%       “       “         “       -38% 

                                “    300  “          “       “        “       - 30%       “       “         “      -35% 

                                “    540  “          “       “        “       - 27%       “       “         “      -30% 
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b) For bridges made from concrete the differences depend both on the concrete quality and 

also on whether it is cracked or not.  

     Both of the above factors can be expressed by the velocity υQ. 

     For concrete bridges using the exact theory we have the following differences on      

deformations compared to the ones got by the classic theory: 

     For L = 60m, speed 105 km/h, open or box cross-section, υQ=1900 -10%,  υQ=500 -3% 

                              “     300   “         “     “    “      “         “            “          -18%       “       -9% 

                              “     540   “         “     “    “      “         “            “           -16%       “       -5% 

     For L = 40m,    “      105   “       “      “    “     “         “             “           -15%       “      -15% 

                              “     300   “         “     “    “      “        “             “           -17%        “       -17% 

                              “     540   “         “     “    “      “        “             “            -20%       “      -15% 

     For L = 20m,    “      105  “         “      “    “     “         “             “          -13%       “        -8%  

                              “      300   “        “      “    “      “         “            “          -14%        “       -6% 

                              “      540   “        “      “    “      “         “            “          -14%        “       -8% 

5.2. Dynamic Behavior of a Beam on Elastic Foundation 

The observed differences between the exact and the classic theory are negligible ranging 

from 0 to -0.5% and they are reduced for foundations on more compact soils. 

It would be of great interest to continue the above study for concrete bridge in relation with 

the quality of concrete and if it is cracked or not.                             
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