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Abstract 

Two-fluid flows occur when immiscible moving fluids of different 

properties are in contact. Exact closed- form solutions are presented for 

oscillatory two-fluid flows. Exact solutions are important not only due for 

its applicability to specific problems but also serve as accuracy standards 

for approximate solutions. These oscillatory solutions are governed by 

geometry, the viscosity ratios, and the normalized frequency s. The 

velocity profiles for large s are different from those of small s. As 

0s the solutions may approach a steady-state. For non-zero s there is a 

phase difference between the two fluids. An important result is that 

Navier's partial slip condition fails for oscillatory flows.  

Keywords: Two-fluid; Oscillatory; Viscous flow; Exact solution; Navier; 

Slip.   

1. Introduction 

Most literature in fluid dynamics are concerned with a single homogeneous fluid. However, in 

certain instances two immiscible fluids are in contact. For example, in order to reduce the 

resistance of the flow of a higher viscosity fluid (e.g. oil), a layer of lower viscosity fluid (e.g. 

water) may be introduced near the container boundary [1]. The same principle applies to the 

ultra-low resistance of superhydrophobic micro-fluidics [2], where a layer of gas supports the 

bulk liquid flow. Two-fluid flow is also utilized in extraction processes in chemical engineering 

[3]. In addition, two-fluid flow is an important model for the flow of particulate fluids, such as 

blood flow in the microcirculation [4].  

The steady, two-fluid channel flow was solved by Bird et al [5]. The steady two-fluid flow in a 

tube was first proposed by Vand [6] originally for the flow of ink. Hayes [7], Sharan and Popel [8] 

applied the two-fluid model to blood flow in small vessels.  

There are some reports on unsteady two-fluid flows. Kapur and Shukla [9] studied an 

exponential increasing unsteady channel flow, and Bhattacharyya [10] studied the channel flow 

due to oscillatory pressure. These two references are limited to the case when the two fluids have 

exactly the same thickness. The two-fluid oscillatory flow in a channel was studied by Wang [11]. 

Recently Wang [12], using infinite series, solved the two-fluid starting flow due to a suddenly 

applied pressure gradient, and Ng [13] considered the two-fluid flow due to an impulsively 

translated channel boundary. The only two-fluid unsteady flow in a tube was reported by 

Bugliarello and Sevilla [14] who sketched the oscillatory flow solution.       

Oscillatory flow is fundamental in fluid mechanics. Examples include fluid motion due to 

boundary oscillations, such as that caused by external vibrations. Also pulsatile flow, which is 
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necessarily oscillatory, can originate from a reciprocal pump or a mammalian heart.  

The purpose of the present paper is to present the closed-form solutions of two-fluid oscillatory 

flow. Relevant previous solutions shall be discussed. Closed-form solutions only exist for 

parallel flows and concentric flows. These exact solutions serve as benchmarks for approximate 

methods, such as numerical, infinite series, or asymptotic results [15]. From these exact solutions, 

we are able to determine whether Navier's partial slip boundary condition [16] can be applied to 

unsteady oscillatory flows.  

2. Formulation 

The assumptions are as follows. We consider the laminar flow of two incompressible immiscible 

Newtonian fluids. The flow is parallel in the region considered and the entrance and exit effects 

can be neglected. The interface of the two fluids is stable where velocity and shear stress are 

matched. No slip occurs on the solid surfaces.  

Consider the two-dimensional two-fluid problems shown in Figure1 (a-c). The flow is parallel to 

the boundary with velocity )','(' ytu  where 't  is the time and 'y  is the coordinate normal to 

the plate at 0'y . There is a layer of a different fluid separating the plate and the interior bulk 

fluid. Let the subscripts 1 and 2 denote the bulk fluid and the boundary fluid respectively. The 

Navier-Stokes equation for parallel flow reduce to (e.g. [17]) 

 

 
Figure1. (a) Oscillating plate and two fluids (b) channel with bottom wall oscillating (c) channel with an oscillating 

pressure gradient (d) longitudinal oscillation of a cylinder wall (e) rotational oscillation of a cylinder about its axis (f) 

tube with oscillating longitudinal pressure gradient. Dashed lines indicate the interface and solid lines the containing 

boundary. 
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where   is the density, 'p  is the pressure, and   is the kinematic viscosity. The primes mean 

dimensional and the subscripts indicate the fluid region. We assume the lower fluid has higher 

density. At the interface the velocities and shear stresses match  
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If there is no pressure gradient and only the boundary oscillates, say 

)'cos('2 tUu            (4) 

where U is the amplitude and   is the frequency. Normalize all lengths by a characteristic 

length L, the time by 1

2 /L , the velocity by U and drop primes. Eq. (1) becomes 

yytyyt uuuu 22

2

11 ,           (5) 

where the ratio of kinematic viscosity is 
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If an oscillatory pressure gradient of magnitude 0G  causes the motion, then  
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where 0G  is the amplitude. We set 1

2

0 / LGU   and the governing equations are 
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Here the non-dimensional frequency parameter and the dynamic viscosity ratio are 
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In either case the matching conditions become 
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In what follows we shall present the basic individual cases. 

3. Flows bounded by parallel flat plates 

I) In-plane oscillation of a single plate.  

Figure1(a) shows an oscillating plate in an infinite fluid separated by a layer of another fluid. Let 

L, the characteristic length, be the thickness of the layer. The governing equations are Eqs.(5) 

with the boundary conditions 

)cos()0,(,0),( 2

21 tstutu         (11) 

and the matching conditions Eqs.(10) are at y=1. Since the governing equations are linear, let 

1i and 

)(),( 2211
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where only the real part of the product has physical significance. Eqs.(5) become 
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2 ffisyffis          (13) 

The solution is 
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The exact closed-form solution Eqs. (12,14-17) is valid for arbitrary s,, . Figure 2 shows 

some typical velocity profiles for frequency parameter s=1. For a single fluid, 1   and 

our solution reduces to Stokes' second problem [18]. 
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Figure 2. Typical velocity profiles for oscillating plate in infinite fluid (Figure1(a)) 2,1  s . From top at left: 

 ,75.0,5.0,25.0,02 ts . 

II) A channel with one wall oscillating in its own plane.  

In this case let L be the channel width, and L be the thickness of the second fluid (Figure1(b)). 

Eqs.(13) remain the same but the boundary conditions differ. The solution is 

)]1(sinh[ 111  ykcf         (18) 

and 2f  retains the same form as Eq.(15). The coefficients are 
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Here  

siksik )1(, 43         (20) 
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Figure 3. Typical velocity profiles in a channel with one plate oscillating (Figure1(b)) 3.0,9.0,5  s . 

From top at left:  ,75.0,5.0,25.0,02 ts . 
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Typical velocity profiles are shown in Figure 3 for a thick lower fluid. In this case a steady state 

solution exists. The steady state velocity profile is piecewise linear, given as 
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Our oscillatory solution as 0s  agrees with the steady state solution.  

III) A channel with an oscillatory pressure gradient 

Here the pressure gradient causes the flow (Figure1 (c)),The length scale L is the width of the 

channel. Substitute Eqs.(12) into Eqs.(8) to obtain 
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The boundary conditions are  
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After some work, the solution is 
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The constants 321 ,, kkk  are defined in Eqs.(16,20) and 
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Figure 4 shows typical velocity profiles for s=5. By setting s=0, we can solve for the steady state 

solution, which is composed of parabolic arcs. 
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Bhattacharyya [10] considered oscillatory pressure in a channel, but the two fluid layers has 

exactly the same height, which is seldom true. Wang [11] studied the oscillatory channel flow 

with similar boundary fluid layers on both walls. This restricts the two fluid densities to be equal 

or near equal.  

4. Flows bounded by a circular cylinder 

For two fluid motion concentric about a circular cylinder, the density must be almost equal (so 

gravity would not distort the interface) or the fluid contains particular matter such that, due to 

steric hindrance, a particle free layer exists near the solid boundary. For example, in 

microcirculatory blood flow there is a core containing red blood cells and a boundary layer of 

mostly cell-free plasma. It has been shown that the two fluid model is well suited to describe 

experimental phenomena (such as Fahraeus-Linqvist effect) for blood flow in vessels of 40 to 



Wang & Liu                          Fluid Mechanics Research Journal                        Vol. 2, No. 1; 2020

  

6 

1000 microns in diameter [19]. 
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Figure 4. Typical velocity profiles for oscillating pressure gradient in a channel (Figure1(c)) 2,1.0,5  s . 

From top at middle:  ,0,75.0,25.0,5.02 ts . 

I) Longitudinal oscillation of a cylinder 

Figure1(d) shows a solid cylinder oscillating longitudinally. There exists a natural length scale L 

which is the radius of the cylinder. The normalized equations, similar to Eqs.(5), are 

rwwwrwww rrrtrrrt /,/ 222

2
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where w is the velocity in the axial direction, and r is the radial coordinate. The matching 

conditions are 
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We distinguish whether the fluid is outside the cylinder or inside the cylinder. If the fluid is 

outside, let region 2 be the annulus  11 r  and region 1 be the infinite fluid  r1 . 

Let 
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Eqs. (28) give 
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The boundary conditions are 
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The solution is 
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Here 21,kk  are defined in Eqs.(16) 00 , KI  are modified Bessel functions, and 
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where 
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sihsihsih )1(,)1(, 321         (35) 

Figure 5 shows the velocity profiles for longitudinal oscillation outside a cylinder. For higher 

frequencies, the velocities are more confined. 
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(a)          (b) 

Figure 5. Typical velocity profiles for longitudinal oscillation of a cylinder in infinite fluid 

(Figure1(d)) 2,1.0   . From top at left:  ,75.0,5.0,25.0,02 ts . (a) s =1 (b) s = 5. 

For fluid flow inside the cylinder due to longitudinal boundary oscillations, Eq.(31) is the same 

with the boundary conditions 
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The solution is  
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(a)           (b) 

Figure 6. Typical velocity profiles for longitudinal oscillation inside a cylinder (Figure1(d)) 2,1.0   . From 

top at right:  ,75.0,5.0,25.0,02 ts . (a) s =1 (b) s =5. 
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Figure 6 shows at low frequencies the inside fluid almost moves as a whole with the boundary, 

while at large frequencies a boundary layer is evident. 

 

II) Rotational oscillation of a cylinder 

Figure 1(d) shows the solid cylinder performing rotational oscillations about its axis. The 

normalized governing equations for concentric flow are 
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where   is the azimuthal velocity. Let 
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Eqs.(40) become 
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If the fluid is outside the cylinder, the boundary conditions are 
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Figure7 shows the velocity profiles for s=1 and s=5. 

As frequency approaches zero, our oscillatory solution agrees with the steady state solution: 
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If the fluid is inside the cylinder, Eqs.(42) still hold but with the boundary conditions 
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   (a)                       (b) 

Figure 7. Typical velocity profiles for rotational oscillation of a cylinder in infinite fluid 

(Figure1(e)) 2,1.0   . From top at left:  ,75.0,5.0,25.0,02 ts . (a) s =1 (b) s =5. 
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Figure 8. Typical velocity profiles for rotational oscillation inside a cylinder (Figure1(e)) 2,1.0   . From 

top at right:  ,75.0,5.0,25.0,02 ts . (a) s =1, (b) s =5. 
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Figure8 shows typical velocity profiles for s=1 and s=5. In the steady state, the interior would 

just be rigid rotation.  

 

III) Oscillatory pressure inside a cylinder 

This case is especially relevant to pulsatile flow in small blood vessels (Figure1 (f)). Bugliarello 

and Sevilla [14] formulated the problem but did not give the closed form solution or any results.  

Using Eqs,(1, 30) the normalized governing equations similar to Eq.(8) are 
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The boundary conditions are Eqs.(36). The solution is 
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Figure 9 shows typical velocity distributions for s=1 and s=5. Notice at low frequencies the 

velocity is almost parabolic and for high frequencies the maximum velocity moved to the sides. 

Thus "Richardson's annular effect" [18] exists also for two-fluid oscillatory flow.  

In the limit of 0s  our oscillatory solution agrees with the steady state solution which is 

composed of two paraboloids 
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(a)          (b) 

Figure 9. Typical velocity profiles inside a cylinder due to oscillation of the pressure gradient (Figure 1(f)) 

2,1.0   . From top at left:  ,75.0,5.0,25.0,02 ts . (a) s =1 (b) s =5. 

5. Testing Navier’s partial slip boundary condition 

Almost two hundred years ago Navier [16], unsure of the no slip boundary condition, suggested a 
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partial slip condition for flow over a solid surface. Navier stated the apparent slip velocity is 

proportional to the local shear stress 

''' Su           (54) 

For parallel flow in normalized form Eq.(54) is 

n

u
Su



 ,    LSS /'        (55) 

where n is the normal coordinate and S is the normalized slip coefficient, or the slip length. 

Navier's condition can be shown approximate, theoretically and experimentally, steady flows of 

rarefied gases, flows with lubricated boundary, and flow over rough surfaces.  

A search in the Science Citation Index shows that there exist dozens of reports applying Navier's 

condition to unsteady flow problems. But is Navier's condition valid for unsteady flows?  

For viscous flow over a lubricated boundary, there exists a thin fluid boundary layer separating a 

bulk flow of higher viscosity. Although the no-slip condition is still applied to the lubricant, the 

bulk flow experiences apparent partial slip.    

For two-fluid starting flow Wang [12] showed Navier's condition fails for the core fluid. Wang 

[11] solved the oscillatory symmetric two-fluid flow in a channel, and the core fluid also does 

not reflect Navier's condition. These unsteady examples are all two-dimensional and all caused 

by unsteady pressure gradients, i.e. Poiseuille type flows.  

This paper presents oscillatory solutions for two-fluid flows. Since these solutions are exact and 

closed-form, they are particularly suited for testing Navier's condition.  

Consider first the Couette type two-fluid flow between two plates caused by a bottom oscillatory 

plate. Let 3.0,9.0    such that the lower (heavier) fluid be the bulk fluid and the top 

layer be the lubricating fluid. If Navier's condition is valid, the normalized slip length S in Eq. 

(54) should remain constant. For the steady state solution Eq. (21), we find 
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which is indeed a constant. Figure 10(a) shows the ratio S for low frequency oscillation (s=0.5) is 

close to the steady-state value but becomes infinite at certain times. It is questionable whether 

these infinite spikes would affect the flow if Navier's condition is applied. Figure 10(b) shows at 

higher frequencies (s=5) the ratio S varies greatly with time. In particular S becomes infinite at 

the spikes. The reason can be explained as follows. The velocity profiles for this case, shown in 

Figure 3, are enlarged in Figure10(c) near the time of a spike. It is seen that while the velocity is 

still positive, the shear stress changed sign since the kinks at the interface at y  changed 

sign. Thus near t=0.086 the slip length becomes infinite.       

Next consider the two-fluid flow caused by oscillatory pressure in a channel. The velocity 

profiles are shown in Figure 4 for 2,1.    where the upper fluid is the bulk and the 

lower fluid has less viscosity (e.g. oil over water). The ratio S is shown in Figure11 where we see 

spikes and non-constant ratio S. Similar results are shown in Figure 12, for oscillatory 

pressure-induced two-fluid tube flow. In fact all the exact solutions in this paper do not support 

Navier's condition.    

Together with the previous reports, we conclude that, in general, Navier's condition cannot be 

applied to unsteady lubricated flows. 
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Figure 10. Normalized slip length S for flow in a channel with one plate oscillating 3.0,9.0   . (a) s =0.5. (b) 

s =5. (c) Detailed velocity profile of Figure 3 From top: t=0.083, 0.086, 0.088. 
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Figure 11. Normalized slip length S for flow in a channel due to oscillating pressure gradient 2,1.0    (a) 

s =1 (b) s =5. 
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Figure 12. Normalized slip length S for flow in a tube due to oscillating pressure gradient 2,1.0    (a) s 

=1 (b) s =5. 

 

6. Discussions and Conclusions 

Table 1 shows a summary of the exact solutions found. All of these solutions are new and 

archival. 

 
Table 1 Exact two-fluid oscillatory solutions. 

Description Figure Solution 

In-plane oscillation of a 

single plate (Couette) 

Fig.1(a) Eqs.(12,14-17) 

Channel with one in-plane 

oscillating wall. (Couette)   

Figure1(b) Eqs.(12,15,18-20) 

Chanel with oscillating 

pressure gradient (Poiseuille) 

Figure1(c) Eqs.(12,25,26) 

Longitidinal oscillation of a 

circular cylinder with fluid  

outside (Couette) 

Figure1(d) Eqs.(30,33-35) 

Longitidinal oscillation of a 

circular cylinder with fluid  

intside (Couette) 

Fig.1(d) Eqs.(30,33,37-39) 

Rotational oscillation of a 

circular cylinder with fluid  

outside (Couette) 

Fig.1(e) Eqs.(41,44,45) 

Rotationnal oscillation of a 

circular cylinder with fluid  

inside (Couette) 

Fig.1(e)  Eqs.(41,48,49) 

Pressure oscillation inside a 

circular cylinder (Poiseuille) 

Fig.1(f) Eqs.(30,51,52) 

 

As we noted previously, closed-form solutions serve as benchmarks for all approximate methods, 

including numerical and series solutions. This paper considers some basic oscillatory two-fluid 

flows. Extensions are possible, such as stratified flows with several layers and concentric annular 
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flows. Starting flows and other unsteady flows may be solved by Laplace transform, but could 

not be in closed form.  

Aside from geometric factors, oscillatory flow is governed by the parameter s in Eq.(9). Some 

estimates of the magnitude of s are as follows. For normal blood flow in arterioles of 100 micron 

diameter, and a resting frequency of 60 beats per minute, we find s is about 0.1. This estimate 

would be increased by an order in exertion. For the transport of olive oil which has been wetted 

by a layer of water, the density ratio   is about unity and the kinematic viscosity of olive oil is 

30 times that of water. For the steady-state one can show the resistance through the tube is 

greatly reduced by the water layer. For a tube of 2 cm radius and a reciprocating pump of 1 cycle 

per second, the value of s is about 9. The range of s can be large for oscillations caused by 

external vibrations. 

Any periodic oscillation can be Fourier-decomposed into individual harmonics. Since the 

problems are linear, our single frequency results can be superposed appropriately. For the higher 

harmonics the frequency would be integer multiples of the basic frequency.     

Using our exact closed-form solutions, together with existing evidence, we find Navier's partial 

slip condition cannot be applied to unsteady lubricating flows. The reason is due to the two fluids 

do not oscillate in phase, causing a mismatch in velocity and shear stress at the interface. Thus 

Navier's condition fails.  
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