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Abstract 
 

This paper describes a technique for the position error estimations and 

compensations of the modeless robots and manipulators calibration process 

based on a shallow neural network fitting function method. Unlike 

traditional model-based robots calibrations, the modeless robots 

calibrations do not need to perform any modeling and identification 

processes. Only two processes, measurements and compensations, are 

necessary for this kind of robots calibrations. The compensation of position 

error in modeless method is to move the robot’s end-effector to a target 

position in the robot workspace, and to find the target position error based 

on the measured neighboring 4-point errors around the target position. A 

camera or other measurement device may be attached on the robot’s end-

effector to find or measure the neighboring position errors, and compensate 

the target positions with the interpolation results. By using the shallow 

neural network fitting technique, the accuracy of the position error 

compensation can be greatly improved, which is confirmed by the 

simulation results given in this paper. Also the comparisons among the 

popular traditional interpolation methods, such as bilinear and fuzzy 

interpolations, and this shallow neural network technique, are made via 

simulation studies. The simulation results show that more accurate 

compensation result can be achieved using the shallow neural network 

fitting technique compared with the bilinear and fuzzy interpolation 

methods. 

Keywords: robotics; modeless robots calibrations; fuzzy interpolations; 

artificial neural networks

1. Introduction 

The prerequisite requirement of the robotic modeless calibration is the successful self-calibration 

of the camera [1, 2] or other measurement device, such as laser tracking system [3]. Both internal 

and external parameters of the camera need to be calibrated accurately [4, 5]. Then the modeless 

robot calibration is divided into two steps [6].  

The first step is to measure the position errors for all grid points on a standard calibration board, 

which is installed on the robot’s workspace. A calibrated camera or other measurement device is 

used to find 4 neighboring position errors. This process can be considered as a measurement 

process, which is shown in Figure 1.  
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At each grid point, a calibrated camera is used to check the position errors of the end-effector of 

the robot. In Fig 1, the desired position of the grid point 0 is (x 0 , y 0 ), and the actual position of 

the robot end-effector is (x
'

0 , y
'

0 ). The position errors for this grid point are e x = x 0 - x
'

0 , and e y = y

0 - y
'

0 . The robot will be moved to all these grid points on the standard calibration board, and all 

position errors on these grid points will be measured and stored in the memory for future usage. 

  

 

 

 

 

 

 
 

 

Figure 1. Setup of the modeless robots calibration. 

In the second step, the robot’s end-effector is moved to a target position that is located in the range 

of the workspace. The target position error could be found by an interpolation technique using the 

stored 4-neighboring grid position errors around the target position, which were obtained from the 

first step. Finally, the target position could be compensated with the interpolation results to obtain 

more accurate positions. 

Triantafilis et al. reported approaches of using fuzzy interpolation methods to estimate the soil 

layer and geographical distributions for GIS database [7, 8]. Song et al described a fuzzy logic 

methodology for 4-dimensional (4D) systems with optimal global performance using enhanced 

cell state space [9]. The most popular interpolation techniques applied in the position 

compensations of the modeless robotic calibration include the bilinear interpolation and fuzzy 

interpolation methods; both methods can achieve satisfactory interpolation results for general 

calibration process [2, 10]. The bilinear interpolation technique assumes that the error of the target 

position is located on the surface that is constructed by the position errors of 4-neighboring grid 

points around the target position [9]. The fuzzy interpolation method assumes that the workspace 

can be divided into a group of smaller cells, and the target positions can be obtained by 

interpolating position errors on 4 neighboring grid points in cells via fuzzy inference system [10]. 

Consequently, the target point’s errors are estimated according to the equations of the error surface 

or fuzzy inference techniques. Since the actual position errors are randomly distributed, and it is 

impossible to pinpoint a position on the error surface at any given moment, the traditional 

interpolation technique is unable to provide an accurate estimation of the position errors. Fuzzy 

error interpolation technique utilizes the fuzzy inference system to estimate the position errors, 

which is consistent with the random distributed nature of position errors. The position errors can 

be considered as a fuzzy set at any given moment of the time. The fuzzification process takes into 

account of a range of error rather only a crisp error value. Therefore, the fuzzy error interpolation 

technique has the fundamentals to improve error estimation results.  

However, more and more robots calibration techniques developed by using artificial neural 

network (ANN) are reported in recent years [11-18]. Xu et al. reported to implement a feedforward 
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neural network that has been trained to predict errors in the joint angles using a fast 

backpropagation learning rule and then implemented in the control system to correct the errors 

[11]. Wu et al. developed an effective hand-eye calibration method with an inverse kinematics of 

robot arms combined with a neural network. With a feedforward neural network and the network 

trained with error propagation algorithm, the cumbersome and time consuming calibration process 

due to the high nonlinearity existed in the models can be effectively resolved and improved [12]. 

Wells et al.  presented a new technique used in vision-based robot positioning calibrations, which 

is based on neural learning and global image descriptors to overcome many limitations existed in 

the operational steps of this kind of calibration process, such as feature-matching algorithms, 

camera calibration, models of the camera geometry and object feature relationships. These steps 

are often computationally intensive and error-prone, and the complexity of the resulting 

formulations often limits the number of controllable degrees of freedom [13]. Nguyen et al.  

designed a new calibration method for enhancing robot position accuracy by using an extended 

Kalman filtering (EKF) algorithm and an artificial neural network (ANN) to effectively 

compensate those non-geometric error sources and un-modeled errors [14].  

Xu et al. proposed a complete calibration method considering geometric errors, joint compliances 

and exterior load to improve poor accuracy of general industrial robots by using an integrated 

inverse kinematics algorithm and a neural network with analytical method [15]. Zouaoui and 

Mekki developed an online identification process by using a neural network (NN) to overcome 

some uncertainties existed in the relationship between the camera motion and the consequent 

changes on the visual features [16]. Tao and Yang reported to implement a Radial Basis Function 

(RBF) Neural Network (NN) augmented robot model together with a two stage calibration process 

for training the NN to improve the calibration accuracy of industrial robots [17]. Luo et al. 

presented a calibration method to resolve the absolute accuracy of robot TCP movement in a 

limited workspace by using the Rectified Linear Unit (ReLU) method based on deep neural 

network (DNN) [18]. All of these researches provide different ways to try to improve the robots’ 

calibration accuracy and strengthen and simplify the calibration processes via artificial neural 

network techniques. 

This study describes a technique for the position error estimations and compensations of the 

modeless robots and manipulators calibration process based on a shallow neural network (SNN) 

fitting function method. A feedforward neural network or called shallow neural network fitting 

technique is utilized to estimate the position errors based on errors on the 4 neighboring grind 

points. With this method, the calibration accuracy can be significantly improved and the calibration 

process can also be greatly simplified. A comparison among three different error interpolation 

methods, bilinear, fuzzy interpolation and SNN, are performed, and the simulation results indicate 

that the SNN method outperforms the other methods. 

This paper is organized in 5 sections. After this introduction section, the principles of the two 

interpolation techniques, bilinear and fuzzy, are provided in sections 2 and 3. Section 4 discusses 

the SNN method. A simulation is given in section 5 to illustrate the effectiveness of the SNN 

technique. Section 6 presents the conclusion. 

2. Bilinear Interpolations 

The bilinear interpolation method is designed to construct a surface based on the known 

neighboring points’ errors. Then the target position error is derived by using an error surface 

equation. The operation principles of the bilinear interpolation methods are discussed in this 

https://www.sciencedirect.com/science/article/pii/0262885696890226#!
https://www.sciencedirect.com/science/article/pii/S0925231214013423#!
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section. 

For easy illustration, we divide the position errors into two parts on a two-dimensional (2-D) plane: 

xe , the error in x direction, and ye , the error in y direction, respectively. We consider xe  and ye  

are two variables that are a function of position x and y in a 2-D plane. 

The bilinear interpolation method is based on a linear analysis method. The interpolated error is 

obtained from an error surface that is constructed based on 4 neighboring errors of the grid points, 

which is shown in Figure 2. 

The interpolation error on the target position P(x
'
, y

'
) is 

e x (x
'
, y

'
) = dx dy e x (x, y) + (1-dx) dy e x (x+1, y) + (1-dy) dx e x (x, y+1) + (1-dx)(1-dy) e x (x+1, y+1) 

e y (x
'
, y

'
) = dx dy e y (x, y) + (1-dx) dy e y (x+1, y) + (1-dy) dx e y (x, y+1) + (1-dx)(1-dy) e y (x+1, y+1)       (1) 

As illustrated in Figure 2, the bilinear interpolation technique is based on two assumptions. First, 

the position error of the target point P(x ' , y ' ) must be located on the error surface, which is built 

based on errors of the four neighboring grid points P1 to P4. Secondly, the error surface has to be 

constructed prior to the application of bilinear interpolation technique. However, these 

assumptions have their drawback. All position errors on each cell are randomly distributed and the 

error curving surfaces, xe and ye , are also randomly distributed at any given moment. We can 

consider the xe  (x ' , y ' ) as a third dimensional function value based on the position x '  and y '

inside each cell. The same consideration is applied to ye  (x ' , y ' ). The compensation accuracy of 

bilinear interpolation is limited by these assumptions. 

 

 

 

 

 

 

 

 

 

Figure 2. Physical structure of the bilinear interpolation. 

3. Fuzzy Error Interpolations 

3.1 The on-line versus off-line fuzzy system  

In order to improve the compensation accuracy, most time a dynamic on-line fuzzy error 

interpolation method is implemented. The off-line fuzzy inference system uses pre-defined 

membership functions and control rules to construct a lookup table; then a control output is 

selected from the lookup table. This type of system is called off-line fuzzy inference system 

because all inputs and outputs have been defined prior to the application process. The off-line 

fuzzy system cannot meet our requirement for the several reasons. First, the position error of the 
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target point is estimated based on 4 errors of the neighboring grid points, and these 4 neighboring 

errors are randomly distributed. The off-line fuzzy output membership functions are defined based 

on the range of errors, which is the neighboring errors’ range here. However, this range estimation 

is not as accurate as the real errors obtained on the grid points. Second, since each cell needs one 

lookup table for the off-line fuzzy system, it would require a huge memory space to save a large 

number of lookup tables. This results in demanding requirement in both space and time, and as a 

result, becomes not practical for real time processing. For example, in our study, 20 20 cells are 

utilized on the calibration board (each cell is 2020 mm); this would require 400 lookup tables! 

By using an on-line dynamic fuzzy inference system, the target position error can be estimated by 

combining the output membership functions, which are defined based on the real errors on 

neighboring grid points and the control rules in real time. The output membership functions are 

not predetermined, and their definitions are based on the real errors on the grid points, not a range. 

3.2 Overview of the fuzzy interpolation system  

Figure 3 shows the definition of the fuzzy error interpolation inference system. Each square that 

is defined by four (4) grid points is called a cell; and each cell is divided into 4 equal smaller cells, 

which are NW, NE, SW and SE, respectively (Figure 3a). The position error at each grid point is 

defined as P1, P2, P3 and P4.  

For the fuzzy inference system, we apply the fuzzy error interpolation method in two dimensions 

separately, so the inputs to the fuzzy inference system are e x and e y and the outputs are ee x and   ee

y (Figure 3b). The control rules are shown in Figure 3c, and will be discussed following the 

discussion of membership functions. 

 

 

 

 

 

 

 

 

 
                      (a)                                                           (b)                                            (c)             

Figure 3. Definition of the Fuzzy Error Interpolation System. 

3.3 Membership functions  

In this study, the distance between two neighboring grid points on the standard calibration board 

is 20 mm in both x and y directions, which is a standard value for a mid-size calibration workspace. 

The calibration board includes a total of 20 by 20 cells, which is equivalent to a 400 by 400 mm 

space. 

The input membership functions for both x and y directions and the predefined output membership 

functions are shown in Figure 4. The predefined output membership functions are used as a default 

one, and the final output membership function will be obtained by shifting the default one by the 

actual error values on the grid points. 

The Gaussian-bell waveforms are selected as the shape of the membership functions for both 
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inputs (Figure 4a) in x and y directions. The ranges of inputs are between –10 mm and 10 mm (20 

mm intervals). Zhuang and Wu reported a histogram method to estimate the optimal membership 

function distribution [19]. However, in our case, a Gaussian-bell shape is selected due to the fact 

that most errors in real world match this distribution.  We use W and E to represent the location of 

inputs in x direction, N and S to represent the location of inputs in y direction. 

Figure 4b shows an example of the output membership functions, which are related to the 

simulated random errors at neighboring grid points. Each P xi and P yi correspond to the position error 

at the ith grid point in x and y directions, respectively. During the design stage, all output 

membership functions are initialized to a Gaussian waveform with a mean of 0 and a range between 

–0.5 and 0.5 mm, which is a typical error range for this workspace in robotic calibration (Figure 

4c). These output membership functions will be determined based on the errors of the neighboring 

grid points around the target in the workspace as mentioned above. 

For example, during the compensation process if the input position in the x direction is in the NW 

area of a cell, the associated output membership function should be modified based on the position 

error in the NW grid point P1. This modification is equivalent to shifting the Px1 Gaussian 

waveform (Figure 4b) and allowing the center of that waveform to be located at x0 = the position 

error value of the P1 in the x direction. A similar modification should be performed for the position 

error in the y direction. It can be seen from Figure 4b that for the position compensation process, 

the performance loss would be significant if the default membership function is utilized, which is 

shown in Figure 4c. 

    
             (a)                                                                 (b)                                                           (c)          

Figure 4.  Input and output membership functions. 

3.4 Control Rules 

The control rules shown in Figure 3c can be interpreted as follows after the output membership 

functions are determined. 
 

 If e x is W and e y is N, ee x is P 1x  and ee y is P 1y  (NW). 

 If e x is W and e y is S, ee x is P 3x  and ee y is P 3y  (SW). 

 If e x is E and e y is N, ee x is P 2x  and ee y is P 2y  (NE). 

 If e x is E and e y is S, ee x is P 4x  and ee y is P 4y  (SE). 
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Each P i should be considered as a combination of two error components, P xi  and P yi , which are 

corresponding to errors in both x and y directions. The error on NW grid point should take more 

weight if the target position (input) is located inside the NW area on a cell. Similar conclusion can 

be derived for errors on SW, NE and SE grid points. 

3.5 Fuzzy inference system 

The fuzzy inference system implemented in this study is an on-line one. This means that output of 

the fuzzy system is not obtained from the pre-defined lookup table, but from a real time fuzzy 

inference calculation that utilizes the pre-defined input membership functions and the real time 

position errors. The input error variables can be expressed as a label set L(E), where E is a linguistic 

input variable. 

L(E) = {NW, NE, SW, SE}                                                           (2) 

 

Assume that u i is the membership function, U i the universe of discourse and m the number of 

contributions, the traditional output of the fuzzy inference system can be represented as 

u = 



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

m
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i

ii

u

Uu

1

1

)(

              (3) 

where u is the current crisp output of the fuzzy inference system. Equation (3) is obtained by using 

the Center-Of-Gravity method (COG). In this study, both u i and U i in the output membership 

functions are randomly distributed variables and the actual values of these variables depend upon 

the position errors of four neighboring grid points around the target position. These relationships 

can be expressed as 

u i = F i (P 1 , P 2 , P 3 , P 4 )                                                              (4) 

U i = Q i (P 1 , P 2 , P 3 , P 4 )                                                              (5) 

where F i  and Q i  are randomly distributed functions. Substituting (4) and (5) into (3), we obtain 

u = 











m

i
i

m

i
ii

PPPPF

PPPPQPPPPF

1
4321

1
43214321

),,,(

),,,(),,,(

                                                    (6) 

In (6), both F i  and Q i will not be determined until the fuzzy error interpolation technique is 

applied in an actual compensation process, which means that this fuzzy inference system is an on-

line process. The final crisp output of the fuzzy error interpolation system is determined by the 

neighboring position errors of 4 grid points.   

The advantage of using the on-line fuzzy inference system is that the control output has the real 

time control ability. On the other hand, it involves certain computational complexity. With the 

processing power of recent microprocessors, this should not become an obstacle for real 

applications. 

4. Shallow neural network fitting function 

4.1 Overview of Artificial Neural Networks 
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The basic unit or building block of an artificial neural network (ANN) is an artificial neuron, which 

can be considered as a node in a network [20]. The general neural neuron is composed of a set of 

inputs xj, (j = 1, 2, … n) where the subscript j represents the jth input. Each input xj has a definite 

weight factor wj that is associated to the input xj, exactly xj is multiplied by the factor wj to form a 

complete input prior to be input to the network. For an ANN with i (i = 1, 2, … m) nodes, an 

additional subscript i is needed to represent the ith node. Also it has a bias term w0, a threshold 

value , a nonlinear function f that acts on the produced signal R, and an output O. A basic model 

of a neuron i or node i is shown in Figure 5. 

The input-output relationship of this neuron can be described by a transfer function as 
 









 



n

j
iijijii xwFO

1

                                                 (7) 

and the neuron’s firing condition is 

iijij xw                                                                      (8) 

 

 

 

 

 

Figure 5.  A basic model of a neuron i. 

Regularly a complete ANN contains multiple nodes with multiple layers, including input layer, 

output layer and hidden layers. Figure 6 shows a model of multiple layers feedforward ANN. The 

dash lines mean that multilayer are included in this ANN and these layers cannot be observable. 

Exactly in Figure 6, on each feedforward arrow branch from one node to another, a weight factor 

wij should be multiplied as shown in Figure 5 to obtain a complete transfer signal. 
 

 

 

 

 

 

 

 

Figure 6. A model of multilayer feedforward ANN. 

Overall, a feedforward ANN can be considered as a complex brain/machine system that is 

composed of multilayer with multi-neuron operating in parallel. In fact, the connections between 

nodes largely determine the network function. One can train an ANN to perform a specified 

function by adjusting the values of the connections (weight factors) between nodes via inputs and 

desired or target outputs. Figure 7 shows an illustration of this training process. 
 

Generally, a neural network can be adjusted or trained, so that a particular input leads to a 
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corresponding target output. In Figure 7, the network is adjusted, based on a comparison between 

the output and the target, until the network output matches the target. Typically, many such input-

target pairs are needed to train a network. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Training process of a feedforward ANN. 

4.2 Neural network model and calibration process 

To meet our requirements, a feedforward shallow neural network is selected. The model is trained 

by a set of input position pairs (input vector), xi and yi, respectively. The outputs are desired or 

target position error pairs (output vector), eexi and eeyi. Four hidden neurons (nodes) with two 

hidden layers are adopted and its structure is shown in Figure 8. In this architecture, the neurons 

of the input layer apply the input signals to the neurons of the hidden layer. The output signals of 

a hidden layer are used as inputs to the next hidden layer and so on. Finally, the output layer 

produces the output results using the last hidden layer as its inputs. We use linear output nodes and 

a Sigmoid activation function in the hidden nodes. 

The input vector consists of the target position vector xi, yi (i = 1 ~ 20), and output consists of the 

error vector. In this Figure, the notation of weights and biases follows the following convention: 

weights of connections between layer j and layer i are indicated by wij; the three sets of neurons 

are denoted as input set I, output set O, and hidden set H1 and H2 (for two hidden layers); the bias 

of layer i are indicated by i. Let Zi be the output from any node i, hidden or output (for an input 

node, it is the received input signal).  
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                                                            (9) 

 

 

 

 

 

 

Figure 8. The shallow neural network structure. 
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                                                                             (11) 

The error signal at the output neuron i O at iteration k is defined by 

erri(k) = Zi(k) – Ti(k)                                                                      (12)  

where Ti(k) is the target value for Zi(k). Ti(k) is derived from xi, yi in our case. The error energy 

for all the neurons in the output layer becomes the L2 norm of error signal, which reflects the 

position offset. 

2
)()( kerrk                                                                           (13) 

The training objective is to minimize the mean-squared error of the shallow neural network over 

Nall sets of training data.  





allN

kall

k
N

E
1

)(
1

                                                                      (14) 

The goal in the calibration process is to build a shallow neural network model for each cell in the 

workspace. In the compensation stage, the errors at an arbitrary position are then estimated using 

neural network model built at this stage for the cell within which the position is located. Finally, 

these estimated or fitting errors are added into the target positions to obtain the compensated 

positions where the platform is commanded to. As the neural network models are ready to use at 

this stage for all the cells, the compensation involves very light computational load. 

5. Simulation results 

Extensive simulation study has been performed in order to illustrate the effectiveness of the 

proposed SNN technique in comparison to the bilinear and fuzzy interpolation methods. The 

uniform distributed random error is used for this simulation study because of its popularity. 
 

We estimate the valid workspace of the robot to be 400 x 400 mm. We choose the size of each cell 

to be 20 x 20 mm after taking into consideration the repeatability of the robot. Consequently, the 

workspace consists of 20 cells in each direction. In our simulation, we simulate actual position 

based on in this format.  

Pa = (xi, yi) + A rand(x, y)                                                                 (15)  

where (xi, yi) is the nominal position, and A is the amplitude of the uniformly distributed noise in 

the interval (-0.5, 0.5) for the random component. 

We implemented MATLAB Neural Network Toolbox to perform these simulation studies. 

Figures 9 and 10 show the structure view and training, validation and testing process of this fitting 

SNN. The Levenberg-Marquardt algorithm is used for this training. 
 

After the first epoch training process, the mean square error (MSE) is reduced below 0.01, and the 

best validation result is in the first epoch (0.0096). The testing result is also good with all errors 

being about 0.01. 
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Figure 9. Structure view of the used SNN. 

Figure 11 shows the training state (11a) and a comparison between the SNN outputs and the target 

positions (11b).  

 
 

Figure 10. Performance of the used SNN (training, validation and testing). 
 

Figure 12 shows the simulation results on position errors of bilinear, fuzzy interpolation and SNN 

fitting method. The simulated target (testing) positions on the standard calibration board are 

scanned from 1 mm to 20 mm within one cell with a step of 1 mm. 

  
(a)                                                                               (b) 

Figure 11.  The training state and comparison of outputs and targets. 
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Figure 12. Simulated position errors for the uniform distributed noise. 

Figure 13 shows comparisons in mean error, maximum error and STD values among bilinear, fuzzy 

interpolation and SNN technique in the histograms.  
 

 

Figure 13.  Comparison among bilinear, fuzzy interpolation and SNN. 

It can be seen that both mean errors and maximum errors of SNN are much smaller than those of 

fuzzy interpolation and bilinear methods. For the uniform distributed error, the mean error of the 

SNN method is approximately 60% to 70% smaller compared with those of bilinear and fuzzy 

interpolation methods. The maximum errors of the SNN technique is about 40% to 50% smaller 

than those of bilinear and fuzzy interpolation techniques. 
  
The simulated results show the effectiveness of the SNN fitting method in reducing the position 

errors in the modeless robot compensation process. 

6. Conclusions 

A shallow neural network fitting method is presented in this paper. The compensated position 

errors in a modeless robot calibration can be greatly reduced by the proposed technique. Simulation 

results demonstrate the effectiveness of the proposed shallow neural network (SNN) fitting 

method. One typical error model, uniform distributed error, is utilized for comparison and 

simulation study purpose. This SNN technique is ideal for the modeless robot position 

compensation, especially the high accuracy (<10 m) robot calibration process.  
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