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Abstract 
The heat transfer from a linearly stretching surface with power-law 

temperature variation along the surface is considered for both stretching and 

shrinking surfaces. For stretching sheets this extends previous works to 

large temperature exponents and reveals new exact solutions. Here for the 

first time shrinking sheets are considered for the dual solutions that exist in 

the presence of suction. It is proven that only the upper branch of the dual 

solutions is stable. Thus only the upper branch is viable and results are given 

at various points along this branch which exhibit discontinuities with 

increasing values of the temperature exponent. These discontinuities 

separate heat transfer away from the wall to heat transfer to the wall. 

Keywords: stretching/shrinking surface; power-law temperature; shear stress; heat 

transfer. 

1. Introduction 

Many researchers have studied problems related to flow over stretching, and sometimes shrinking 

sheets. Some include the effects of heat transfer, suction and blowing and stagnation-point flow. 

For example, a general study of stagnation-point flows impinging on linearly and radially 

stretching surfaces was reported by Weidman and Turner [1] and Weidman [2] considered the 

problem of Hiemenz stagnation-point flow impinging on a biaxially stretching surface. 

In the present study we are interested in the heat transfer from stretching surfaces in the absence 

of an outer streaming flow. Although problems have been investigated for convective flow along 

vertical stretching surfaces — see Patil, et al [3] and Gorla and Sidawi [4] — we restrict our 

discussion to horizontal surfaces. In particular, we consider linearly stretching and linearly 

shrinking surfaces with associated wall temperature varying as a power-law of the distance along 

the plate. Crane [5] was the first to provide a solution for a linearly stretching plane with a 

uniformly heated surface. The problem of power-law temperature variation along a linearly 

stretching plate was first considered by Grubka and Bobba [6]. Subsequently, Chen and Char [7,8] 

and Ali [9,10] have extended this problem to include the effects of power-law stretching surfaces, 

non-Newtonian flow, and transpiration through the porous surface. For temperatures varying with 

downstream distance as xn, the above studies have been limited to exponents in the range                   

−3 ≤ n ≤ 3. 

The goal of the present investigation is to extend results to n = 20 for stretching sheets and to 

consider, for the first time, power-law temperature variations along a shrinking sheet. Miklavcic 

and Wang [6] were the first to consider the flow induced by a shrinking sheet and found that 

suction was necessary to maintain the flow. Denoting f0 as the suction parameter they found dual 

solutions for all f0 > 2, a unique solution for f0 = 2 and no solutions for f0 < 2. In this paper we 

prove that only the upper branch of the dual solutions is stable. Solutions are reported along the 
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upper viable branch at selected values of the suction parameter for various values of the 

temperature exponent. We find that the flow alternates between heat transfer from the wall to heat 

transfer to the wall as the exponent n increases. 

The presentation is as follows. In §2 the problem is formulated. The problem for stretching plates 

is analyzed in §3 and that for shrinking plates is given in §4. The stability of the dual solutions 

encountered for a shrinking surface is presented in an Appendix and a discussion with concluding 

remarks are given in §5. 

2. Problem Formulation 

We consider a modification and generalization of the problem of a linearly stretching plate studied 

by Crane [5]. Crane considered heat transfer from a plate with uniform wall temperature. Here we 

posit temperature with power-law variations in the direction of flow and also include the case of a 

linearly shrinking plate. 

We take Cartesian coordinates (x, y) with corresponding velocities (u, v) and temperature T. 

At the wall, we presume linear stretching and power-law temperature variations of the form  

𝑢(𝑥, 0) = 𝛼𝑥,                 𝑣(𝑥, 0) = 0,                  𝑇(𝑥, 0) = 𝑏𝑥𝑛 + 𝑇∞     (1) 

where a > 0 corresponds to a stretching plate, a < 0 corresponds to a shrinking plate, and T∞ is the 

uniform temperature in the far field. The continuity equation, the two-dimensional boundary-layer 
equations for zero pressure gradient in the quiescent far field, and the heat equation are given as 

𝑢𝑥 + 𝜐𝑦 = 0                     (2a) 

𝑢𝑢𝑥 + 𝜐𝑢𝑦 = 𝑣𝑢𝑦𝑦                                                   (2b) 

𝑢𝑇𝑥 + 𝜐𝑇𝑦 = 𝜅𝑇𝑦𝑦                                                        (2c)                                         

where  is the kinematic viscosity,  = k/cp is the thermal diffusivity in which k is the thermal 

conductivity and cp the specific heat at constant pressure. 

We now posit the solution form satisfying the continuity equation as 

𝑢(𝑥, 𝑦) = 𝑎𝑥𝑓́(𝜂),         𝑢(𝑥, 𝑦) = −√𝑎𝑣 𝑓(𝜂),            𝑇(𝑥, 𝑦) = 𝑏𝑥𝑛𝜃(𝜂) + 𝑇∞,      𝜂 = √𝑎 𝑣𝑦⁄        (3) 

Inserting this into the governing equations (2) gives the one way coupled ordinary differential 

equations 

𝑓′′′ + 𝑓 𝑓′′′ − 𝑓′2 = 0                       (4a) 

𝜃′′ + 𝑃𝑟 (𝑓𝜃′ − 𝑛𝑓′𝜃 = 0                  (4b) 

in which Pr = ν/ is the Prandtl number. We consider stretching and shrinking plates 

separately in the following sections. 

Of interest is the wall shear stress is given by 

𝑇 = 𝜇
𝜕𝑢

𝜕𝑦
|

𝑦=0
= 𝜌𝑣1 2⁄ 𝑎3 2⁄ 𝑥𝑓′′(0)                                             (5) 

and also, the wall heat transfer is  

          𝑞 = 𝑘
𝜕𝑇

𝜕𝑦
|𝑦 = 0 = −𝑘𝑏√

𝑎

𝑣
𝑥𝑛𝜃′(0)                                        (6) 

3. Linearly stretching plates 

For linearly stretched plates, Eqs. (4) are to be solved with boundary and far field conditions 

𝑓(0) = 0,                 𝑓′(0) = 1,                    𝑓′(∞) = 0,                  𝜃(0) = 1,            𝜃(∞) = 0              (7) 
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The solution of the Crane stretching problem (4a) is 𝑓(𝜂) = 1 − 𝑒−𝜂 and insertion into the 

heat equation (4b) gives 

𝜃′′ +  𝑃𝑟[(1 − 𝑒−𝜂)𝜃′ − 𝑛𝑒−𝜂𝜃] = 0                                         (8) 

Although a first integral exists, one must ultimately resort to numerical calculation for solutions 

when Pr ≠ 1. Note that solutions here depend on two parameters, namely the Prandtl number Pr 

and the temperature exponent n. However, in the case Pr = 1 for which the boundary-value 

problem is 

     𝜃′′ + (1 − 𝑒−𝜂)𝜃′ − 𝑛𝑒−𝜂𝜃 = 0,                    𝜃(0) = 1,                        𝜃(∞) = 0                   (9)   

an exact solution exists given by                                             

𝜃(𝜂) = 𝑒−𝜂 𝑈(1−𝑛,2,−𝑒−𝜂)

𝑈(1−𝑛,2,−1)
                                                       (10) 

where U(a, b, z) is the Kummer confluent  hypergeometric  function; see Abramowitz and Stegun 

[12]. Note that n need not be an integer. 

Two simple forms of (10) exist. First, for n = 0 corresponding to uniform wall temperature, Crane 

[5] found 

𝜃(𝜂) =
𝑒

𝑒−1
(1 − 𝑒−𝑒−𝜂

)                                                (11) 

and for n = 1 the solution is simply 

𝜃(𝜂) = 𝑒−𝑛                                                      (12) 

Another exact solution was uncovered during the numerical integrations to be presented in 

the next section. While integrating for Pr = n = 10 one finds 𝜃′(0) = −10. Also, solution (12) 

shows that at Pr = n = 1 the wall temperature gradient 𝜃′(0) = −1 is found. This led to a new 

exact solution for all Pr = n of the form 

                  𝜃(𝜂) = 𝑒−𝑛𝜂                                                      (13) 

Sample exact solutions θ(η) at Pr = 1 are provided in figure 1. 
 

 

 
Figure 1. Similarity temperature profiles 𝜃(𝜂) for stretching at Pr = 1 for exponent values n = {0, 1, 2, 3, 5, 10}. The 

arrow points in the direction of increasing n and the bold line profiles are the exact solutions given by Eqs. (11) and 

(12). 
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3.1. Numerical results 

Numerical calculations were performed using the integrator package ODEINT in Press, et al. 

[13]. Integration lengths were varied to ensure solution independence of integration length.  

A study of the stretching wall problem was carried out for the three Prandtl number Pr 

={1, 5, 10} varying the temperature exponent n. Results for the wall heat transfer parameter 

𝜃′(0) are given in figure 2. The closed symbols in this figure pertain to results obtained from the 

exact solution for Pr = n given in Eq. (13). Note the limit to zero wall heat transfer at n = −1. 

This motivates looking for an exact solution at n = −1 which is found to be 

𝜃(𝜂) = 𝑒𝑃𝑟[𝑒−𝑃𝑟(𝜂+𝑒−𝜂)]                                                     (14) 

which furnishes the wall heat transfer result 𝜃′(0) = 0. 

  
Figure 2. Stretching plate results showing the wall temperature gradient 𝜃′(0) plotted as a function of the 

temperature exponent n for Pr = {1, 5, 10} with diamonds for Pr = 1, circles for Pr = 5 and squares for Pr = 10. The 

solid points denote exact results derived from Eq. (13). 

 

 
Figure 3a. Similarity temperature profiles 𝜃(𝜂) for stretching at Pr = 5 for exponent values n = {0, 1, 2, 3, 5, 10}. 

The arrow points in the direction of increasing n and the bold line profile is the exact solution given by Eq. (13) for 

n = 5. 
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Figure 3b. Similarity temperature profiles 𝜃(𝜂) for stretching at Pr = 10 for exponent values n = {0, 1, 2, 3, 5, 10}. 

The arrow points in the direction of increasing n and the bold line profile is the exact solution given by Eq. (13) for 

n = 10. 

 

Sample velocity profiles for Pr = 5 are displayed in figure 3a and profiles for P r = 10 are shown 

in figure 3b. Comparison of results in figures 1 and 3 shows that the temperature boundary layer 

thickness decreases with increasing Prandtl number. 

4. Linearly shrinking plates 

Solutions for shrinking plates require suction to maintain the flow. In this case the appropriate 

boundary and far-field conditions for Eq. (4a) are  

𝑓(0) = 𝑓0,              𝑓′(0) = −1,                𝑓′(∞) = 0,            𝜃(0) = 1,          𝜃(∞) = 0      (15) 

where f0 > 0 corresponds to suction which is the required form of solution. 

The solution of (4a) is then found to be (Miklavcic and Wang [11]) 

𝑓(𝜂) = 𝑓0 +
𝑒−𝛼𝜂−1

𝛼
                                                               (16) 

where 

𝑓′′(0) = 𝛼±=
𝑓0±√𝑓0

2−4

2
                                                        (17) 

and the subscripts {±} denote upper and lower branch solutions. A plot of the wall shear stress      

f ʹʹ(0) as a function of the suction parameter f0 on both branches is given in figure 4. The stability 

analysis presented in the Appendix shows that the upper branch is stable whilst the lower branch 

is unstable. Thus, henceforth we will only consider α+ ≡ α = f ́ ʹ(0) corresponding to the stable upper 

branch solution. In this case we insert solution (16) into the heat equation (4b) to obtain 

𝜃′′ + 𝑃𝑟 [(𝑓0 +
𝑒−𝛼𝜂−1

𝛼
) 𝜃′ + 𝑛𝑒−𝛼𝜂𝜃] = 0                                             (18) 

to be solved with boundary and far-field conditions on θ(η) as given in (15). Notice that now for 

shrinking plates there are three parameters involved, namely the Prandtl number Pr, the 

temperature exponent n and the suction parameter f0 which is known over the region of 

existence of solutions varying from.  
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Figure 4. Dual solution branches for the shrinking plate plotting the wall shear stress parameter f′′(0) against the 

suction parameter f0. The analysis in the Appendix shows that only the upper solution branch is stable. 

 

While solutions exist for all f0 ≥ 2, the only exact solution found is for P r = 1 at the turning point 

at f0 = 2. In this case the solution for any n is given by 

𝜃(𝜂) = 𝑒−𝜂 𝑈(1−𝑛,2,𝑒−𝜂)

𝑈(1−𝑛,2,1)
                                                        (19) 

where again U(a, b, z) is the Kummer confluent hypergeometric function. A simpler solution 

exists for n = 1 which is given by 

𝜃(𝜂) =
𝑒𝑒−𝜂−1

𝑒−1
                                                               (20) 

A plot of dimensionless temperature profiles θ(η) at the value f0 = 2 is provided in figure 5 for 

selected values of n. Note the change of sign in θ'(0) that occurs across n = 2. 

 

 
Figure 5. Similarity temperature profiles 𝜃(𝜂) for shrinking at Pr = 1 and f0 = 2.0 for 

exponent values n = {0, 1, 2, 2.5, 2.8, 3}. The arrow points in the direction of increasing 

n and the bold line profile is the exact solution given by Eq. (20) 
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Figure 6a. Wall temperature gradient 𝜃′(0) at f0 = 2.0 plotted as a function of the temperature exponent n for Pr = 1 

in which the solid points indicate zero wall heat transfer. 

 

 
Figure 6b. Wall temperature gradient 𝜃′(0) at f0 = 2.0 plotted as a function of the temperature exponent n for Pr = 5 

in which the solid points indicate zero wall heat transfer. 

 

 
Figure 6c. Wall temperature gradient 𝜃′(0) at f0 = 2.0 plotted as a function of the temperature exponent n for Pr = 10 

in which the solid point indicates zero wall heat transfer. 
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4.1. Numerical results 

Here we have three parameters, so we will compute θ'(0) versus the temperature exponent n for 

the same three Prandtl numbers P r = {1, 5, 10} as for the stretching plate problem, only now do 

it for selected values of the suction parameter f0. The four selected values of f0 considered and the 

corresponding values of f ʹʹ(0) on the upper stable branch are listed in Table 1. 

Table 1. The four selected values of f0 considered for shrinking plates and the corresponding values of f ʹʹ(0). 

 

 

 

 

We start with the turning point value f0 = 2.0 for which f ʹʹ(0) = 1.0. According to the stability 

analysis in the Appendix, this is a point of neutral stability. These results for the wall temperature 

gradient θ'(0) are given in three plots: figure 6a for P r = 1.0, figure 6b for P r = 5.0 and figure 

6c for P r = 10.0. The interesting feature here is the appearance of singularities across which the 

wall temperature gradient changes sign, and between which there are also zero crossings in θ'(0) 

A plot of these features is presented in figure 7. Sample temperature profiles in regions I, II, II 

and IV shown in figures 8a,b,c respectively corresponding to P r = {1, 5, 10}. The solid lines 

show profiles for heat transfer from the wall to the fluid and the dashed liens show profiles 

for heat transfer from the fluid to the wall.  

 

 
Figure 7. Cross plot for f0 = 2.0 of temperature exponents n at the zero and singular points found in figures 6a, b, c. 

The solid circles, squares, diamonds and triangles show the Prandtl number variation of the first, second, third and 

fourth zeros of 𝜃′(0). The open circles, squares and diamonds show the Prandtl number variation of the singular 

values of 𝜃′(0). 

 

 

 

 

 

f0 f ʹʹ(0) 

2.0 

2.5 

3.0 

4.0 

1.000 

2.000 

2.618 

3.732 
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Figure 8a. Similarity temperature profiles 𝜃(𝜂) at f0 = 2.0 for the shrinking plate at Pr = 1. The sold lines for n = 

{3.5, 11, 20} correspond to heat transfer from the wall to the fluid while the dashed lines for n = {−1.0, 4.2, 13} 

correspond to heat transfer from the fluid to the wall. 

 
Figure 8b. Similarity temperature profiles 𝜃(𝜂) at f0 = 2.0 for the shrinking plate at Pr = 5. The sold lines for n = 

{6.4, 9.85, 14.25, 19.5} correspond to heat transfer from the wall to the fluid while the dashed lines for n = {−1.0, 

6.75, 10.5, 15.4} correspond to heat transfer from the fluid to the wall. 

 
Figure 8c. Similarity temperature profiles 𝜃(𝜂) at f0 = 2.0 for the shrinking plate at Pr = 10. The sold lines for n = 

{11.2, 14, 17.3} correspond to heat transfer from the wall to the fluid while the dashed lines for n = {9, 12, 15, 

18.75} correspond to heat transfer from the fluid to the wall. 
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We now move on to higher values of f0. Figure 9 shows results for f0 = 2.5, figure 10 shows results 

for f0 = 3.0 and figure 11 shows results for f0 = 4.0.  Clearly, over the range −1 ≤ n ≤ 20 there 

are tow singularities for f0 = 2.5, but these disappear for the strong suction values f0 = 3 and f0 

= 4.  Sample temperature profiles for f0 = 4 at P r = {1, 5, 10} are given in figure 12. 

 
Figure 9. The f0 = 2.5 wall temperature gradient 𝜃′(0) plotted as a function of the temperature exponent n for Pr = 

{1, 5, 10} with diamonds for Pr = 1, circles for Pr = 5 and squares for Pr = 10. The solid points indicate zero wall 

heat transfer. 

 

 

 
Figure 10. The f0 = 3.0 wall temperature gradient 𝜃′(0) plotted as a function of the temperature exponent n for Pr = 

{1, 5, 10} with diamonds for Pr = 1, circles for Pr = 5 and squares for Pr = 10. The solid point indicates zero wall 

heat transfer. 

5. Discussion and Conclusion 

We have considered the flow and heat transfer induced by a stretching or shrinking sheet under 

the influence of wall temperatures that increase as bxn. For stretching sheets studied by Grubka 

and Bobba [6], Chen and Char [7,8], Ali [9,10] we have extended their work by increasing the 
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exponent to n = 20 and have reported new exact solutions. In particular there is a simple exact 

solution for the case Pr = n given by Eq. (13). 

 

 
Figure 11. The f0 = 4.0 wall temperature gradient 𝜃′(0) plotted as a function of the temperature exponent n for Pr = 

{1, 5, 10} with diamonds for Pr = 1, circles for Pr = 5 and squares for Pr = 10. 

 

 

 
Figure 12. Similarity temperature profiles 𝜃(𝜂) at f0 = 4.0 for the shrinking plate at Pr = {1, 5, 10} plotted for n = 

{0, 10, 20}. The upper bold lines for Pr = 1, the middle-dashed lines are for Pr = 5 and the lower thin lines are for 

Pr = 10 with arrows in the directions of increasing values of n. 

 

For an isothermal shrinking surface, Miklavcic and Wang [11] showed that suction must be present 

and found dual solutions for all f0 ≥ 2. In the Appendix we have analyzed the stability of these 

solutions and find that only the upper branch is stable. Thus, for the first time, we perform a study 

of solutions for a shrinking sheet along the upper branch at selected values of f0 with power-law 

temperature variations up to n = 20. The value f0 = 2 is neutrally stable and reveals complicated 

temperature variations with increasing n. For this critical value, discontinuities in the wall 

temperature gradient exists separating regions of heat transfer to and from the wall. Also, there are 
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zero crossings between the singularities that also separate regimes of heat transfer to and from the 

wall. The regions between discontinuities labeled I, II, III and IV behave as tangent functions but 

with periods increasing with n; see figure 6a,b,c. As the transpiration parameter is increased to f0 

= 2.5 only the regions I and II appear, and for f0 = 3 and 4 the discontinuities disappear completely, 

at least in the region −1 ≤ n ≤ 20 studied here. 

Sample temperature profiles for stretching sheets at Pr = 1 shown in figure 1 exhibit monotone 

behavior and similar profiles exist for Pr = 5, 10. For shrinking sheets, on the other hand, the 

temperature profiles shown in figures 8a,b,c for f0 = 2.0 display signatures of heat transfer from 

the wall to the fluid (solid lines) and from the fluid to the wall (dashed lines). This feature is still 

apparent for f0 = 2.5 but disappears for f0 = 3 and 4 in the range −1 ≤ n ≤ 20 studied here. The 

curious feature of the existence of discontinuities in the wall temperature gradient for shrinking 

surfaces is linked to the neutral stability feature of f0 = 2.0 but this feature abates as f0 increases. 

We have not been able to provide a physical explanation for the appearance of the discontinuities 

with increasing values of n which separate regimes of heat transfer to and from the wall. Perhaps 

an explanation of this feature can be obtained in the future, but heat transfer from the outer ambient 

to the wall seems to be not physically realizable. 

6. Appendix 

We now ascertain the stability for linear shrinking plates where dual solutions exist. Thus, we need 

to include the temporal acceleration in the momentum equation which is done by positing the 

solution as 

𝑢(𝑥, 𝜂, 𝜏) = 𝑎 𝑥 𝑓′(𝜂, 𝜏)                                                     (A.1) 

where  = a t and the prime still denotes differentiation with respect to . Inserting this into the 

unsteady momentum equation gives 

𝑓′′′ + 𝑓 𝑓′′ − 𝑓′2
− 𝑓𝜏

′ = 0                                                    (A.2) 

Following Merkin [14] we study the temporal stability of solutions by inserting 

𝑓(𝜂, 𝜏) = 𝑓1(𝜂) + 𝑔(𝜂)𝑒−𝜆𝜏                                                     (A.3) 

into (A.2) assuming |𝑔(𝜂)| ≪ |𝑓1(𝜂)| for small disturbances. The leading order term gives the 

original equation for 𝑓(𝜂), and the first-order correction gives rise to the boundary value problem 

𝑔′′′ + 𝑓1 𝑔′′ − 2𝑓1
′𝑔′ + 𝑓1

′′𝑔 + 𝜆𝑔′ = 0                                                    (A.4a) 

𝑔(0) = 0,                             𝑔′(0) = 0,                    𝑔′(∞) = 0                     (A.4a) 

Solutions are obtained setting 𝑔′′(0) = 1 and varying  to satisfy the far field condition in (A.4b). 

Solution of (A.4) give an infinite set of eigenvalues 1 < 2 < 3 < … ; if the smallest eigenvalue 

1 is negative, there is an initial growth of disturbances and the flow is unstable; when 1 is 

positive, there is an initial decay and the flow is stable. 

In our problem 𝑓0 = 2 is a turning point in the solutions and corresponds to a point of neutral 

stability. For values of 𝑓0
′′ exhibiting a turning point, local theory of the saddle-node bifurcation is 

sufficient to ensure that, generically, there is a transition of stability across each turning point; see, 

for example, Kuznetsov [15]. Thus, stability of one branch of solutions infers instability of the 

other branch. The lowest eigenvalues at selected points on the upper branch have been calculated 

with sample results as shown in Table 2. Since the results show that 1 > 0, the upper branch 

solution is stable whilst the lower branch is unstable. 
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Table 2. Lowest eigenvalue λ1 at selected values of 𝑓0 on the upper branch solution. 

𝑓0 λ1 

2.50 1.0374 

3.00 1.7677 

3.50 2.5182 

4.00 3.2316 
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