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Abstract 

The effect of temperature dependent viscosity μ(T), on steady two-dimensional 

natural convection flow along a vertical wavy cone with uniform surface heat flux, 

has been investigated numerically. Viscosity is considered to be a linear function 

of temperature T. Using the appropriate variables, the Navier-Stokes and energy 

equations are transformed into non-dimensional boundary layer equations and then 

solved numerically employing marching order implicit finite difference method 

with double sweep technique. The effects of viscosity variation parameter on the 

velocity profile, temperature profile, velocity vector field, skin friction coefficient, 

average Nusselt number, streamlines, and isotherm have been discussed by 

graphical representation. 

Keywords: Natural convection, Wavy cone, Variable viscosity, Heat flux, Finite 

Difference Method. 

Nomenclature 

a Amplitude wavelength ratio. 

Cf Skin friction coefficient. 

Gr Grashof number. 

k Thermal conductivity. 

Unit vector normal to the surface. 

Num Average Nusselt number. 

P Dimensionless pressure function. 

Pr Prandtl number.  

q w Uniform heat flux at the surface.  

Local radius of the of the cone. 

r, R Dimensionless radius of the cone. 

T Temperature in the boundary layer. 

T Temperature of the ambient fluid. 

Tw Temperature at the surface. 

(u, v) Dimensionless velocity component. 

Greek symbols 

 Volumetric coefficient of thermal 

expansion. 

Ε Viscosity variation parameter. 

 , Θ Dimensionless temperature function.

 Viscosity of the fluid. 

∞ Dynamic viscosity of the ambient fluid. 

ν∞ Reference kinematic viscosity. 

 Density of the fluid. 

 (x) Non-dimensional surface profile. 

τw Shearing stress. 

Φ The half angle of the cone. 

 Stream function. 

Subscripts 

m Average condition 

 Ambient condition  

x Differentiation with respect to x 

1. Introduction

Roughened surfaces are encountered in heat transfer devices such as flat plate solar collectors and 

flat plate condensers in refrigerators.  Larger scale surface non-uniformities are encountered, for 

example, in cavity wall insulating systems and grain storage containers, room heater, etc. If the 

surface is wavy, the flow is disturbed by the surface, and this alters the rate of heat transfer. 

n̂

 xr ˆˆ
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The only papers to date that first study the effects of such non-uniformities on the vertical 

convective boundary layer flow of a Newtonian fluid are those of Yao [1], Moulic and Yao [2, 3]. 

The problem of free convection flow from a wavy vertical surface in the presence of a transverse 

magnetic field was studied by Alam et al. [4]. Natural convection over a vertical wavy cone and 

frustum of a cone has been studied by Pop and Na [5, 6]. Cheng [7] have investigated natural 

convection heat and mass transfer near a vertical wavy cone with constant wall temperature and 

concentration in a porous medium. Wang and Chen [8] have studied mixed convection boundary 

layer flow on inclined wavy plates including the magnetic field effect. Yao [9] studied natural 

convection along a vertical complex wavy surface. Molla et al. [10] studied the natural convection 

flow along a vertical complex wavy surface with uniform heat flux where the fluid viscosity is 

constant. Mutthy et al. [11] investigated the natural convection heat transfer from a horizontal 

wavy surface in a porous enclosure. Kumar [12] studied free convection induced by a vertical 

wavy surface with heat flux in a porous enclosure. 

In all of the studies as mentioned above the viscosity is considered of the fluids is constant in the 

flow regime. The physical properties of fluid may change significantly with temperature. For 

instance, the viscosity of water decreases about 240% when the temperature increases from 10oC 

to 50oC. Also, the viscosity of air is 0.6924×10-5 kg/m.s, 1.3289 kg/m.s, 2.286 kg/m.s and 3.625 

kg/m.s at 1000K, 2000K, 4000K and 8000K temperature respectively [13].  

To predict the flow behaviors accurately, it is necessary to take the viscosity into account. Gray et 

al. [14], Mehta and Sood [15] found that the flow characteristics substantially changed with the 

effect of temperature dependent viscosity. Ling and Dybbs [16] have considered the viscosity to 

vary inversely to the temperature which is appropriate for the fluid having large Prandtl number. 

On the other hand, Chrraudeau [17] has proposed a formula assuming the viscosity of the fluid to 

be proportional to a linear function of temperature. Following Chrraudeau [17], Hossain et al. [18-

20] have studied the natural convection flow along a vertical wavy cone and wavy surface with 

uniform surface temperature in the presence of temperature dependent viscosity.  Molla et al. [21] 

investigated the natural convection flow along a vertical wavy surface with temperature dependent 

viscosity and thermal conductivity. Very recently, Rahman et al. [22] investigated natural 

convection flow along the vertical wavy cone in case of uniform surface heat flux. They have 

considered viscosity to be an exponential function of temperature. 

In many applications, the surface temperature is non-uniform. The case of uniform surface heat 

flux has great importance in engineering applications.  In the present study, the free convection 

flow along a vertical wavy cone with surface heat flux and the viscosity is the linear function of 

temperature has been used which is appropriate for the small Prandtl number or gaseous fluid. The 

current problem is solved numerically using marching order implicit finite difference method. 

Solutions are obtained for the fluid having Prandtl number Pr = 0.7 (air) with the different values 

of viscosity variation parameter. Also, the effects of the amplitude of the waviness on the solution 

are observed. 

2. Formulation of the Problem 

The boundary layer analysis outlined below allows the shape of the wavy surface,  to be 

arbitrary, but our detailed numerical work will assume that the surface exhibits sinusoidal 

deformations. Thus, the wavy surface of the cone is described by 

𝑦̂𝑤 = 𝜎(𝑥̂) = 𝑎̂𝑠𝑖𝑛(𝜋𝑥̂/𝐿)                                                            (1) 

where 2L is the fundamental wavelength associated with wavy surface and  is the amplitude of 

 x̂̂

â
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the waviness. 

The physical model of the problem and the two-dimensional coordinate system are shown in 

Figure 1, where φ is the half angle of the flat surface of the cone and   is the local radius of 

the flat surface of the cone which is defined by                                                                            

𝑟̂ = 𝑥̂𝑠𝑖𝑛𝜑                                                              (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Physical model and the coordinate system. 

Under the Boussinesq approximation, we consider the flow to be governed by the following 

equations: 
𝜕(𝑟̂𝑢)

𝜕𝑥̂
+

𝜕(𝑟̂𝑣̂)

𝜕𝑦̂
= 0                                                                 (3) 

𝑢̂
𝜕𝑢

𝜕𝑥̂
+ 𝑣

𝜕𝑢

𝜕𝑦̂
= −

1

𝜌

𝜕𝑝

𝜕𝑥̂
+

1

𝜌
∇̅ ∙ (𝜇∇̅𝑢̂) + 𝑔𝛽(𝑇 − 𝑇∞)𝑐𝑜𝑠𝜑                                (4) 

𝑢̂
𝜕𝑣̂

𝜕𝑥̂
+ 𝑣

𝜕𝑣̂

𝜕𝑦̂
= −

1

𝜌

𝜕𝑝

𝜕𝑦̂
+

1

𝜌
∇̅ ∙ (𝜇∇̅𝑣) + 𝑔𝛽(𝑇 − 𝑇∞)𝑠𝑖𝑛𝜑                                 (5) 

𝑢̂
𝜕𝑇

𝜕𝑥̂
+ 𝑣

𝜕𝑇

𝜕𝑦̂
=

𝑘

𝜌𝑐𝑝
∇2𝑇                                                         (6) 

where  are the dimensional coordinates and  are the velocity components parallel to 

. Also k is the thermal conductivity, Cp is the specific heat at constant pressure and μ is the 

temperature dependent viscosity of the fluid which is defined as a linear function of the 

temperature.                                                                      

𝜇 = 𝜇∞[1 + 𝛾(𝑇 − 𝑇∞)]                                                  (7) 

where μ∞ is the viscosity of ambient fluid outside the boundary layer and γ is a constant. 

The boundary condition for the present problem is  

𝑢̂ = 0, 𝑣 = 0, 𝑞𝑤 = −𝑘(𝑛̂ ∙ ∇̅𝑇̂ ) 𝑎𝑡  𝑦̂ =  𝑦̂𝑤 = 𝜎(𝑥̂)                               (8a) 

𝑢̂ = 0, 𝑇 = 𝑇∞ 𝑎𝑠  𝑦̂ → ∞                                                     (8b) 

where qw is the uniform heat flux and  is the unit vector normal to the wavy surface. 

Now the following non-dimensional variables are introduced to obtain a set of non-dimensional 

governing equation: 

𝑥 =
𝑥̂

𝐿
, 𝑦 =

𝑦̂−𝜎(𝑥̂)

𝐿
𝐺𝑟1 5⁄ , 𝑟 =

𝑟̂

𝐿
 , 𝑎 =

𝑎̂

𝐿
, 𝜎(𝑥) =

𝜎(𝑥̂)

𝐿
, 𝜎𝑥 =

𝑑𝜎̂

𝑑𝑥̂
=

𝑑𝜎

𝑑𝑥
 , 𝑝 =

𝐿2

𝜌𝜐∞
2 𝐺𝑟−4 5⁄ 𝑝̂, 𝑢 =

𝜌𝐿

𝜇∞
𝐺𝑟−2 5⁄ 𝑢,̂   𝑣 =

𝜌𝐿

𝜇∞
𝐺𝑟−1 5⁄ (𝑣 − 𝜎𝑥𝑢̂), 𝜃 =

𝑇−𝑇∞

(𝑞𝑤𝐿/𝑘)
𝐺𝑟1 5⁄ , 𝐺𝑟 =

𝑔𝛽 𝑞𝑤 𝑐𝑜𝑠𝜑

(𝑘𝜐∞
2 )

𝐿4                          (9)                      

where θ is the dimensionless temperature function and ν∞ = μ∞/ρ is the kinematic viscosity. Here 

the new coordinate system (x, y) are not orthogonal, but a regular rectangular computational grid 

 xr ˆˆ
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can be easily fitted in the transformed coordinate. On introducing the above dimensionless 

dependent and independent variables into the equations (3)-(6) the following dimensionless form 

of the governing equations are obtained at leading order in the Grashof number, Gr → ∞: 
𝜕(𝑟𝑢)

𝜕𝑥
+

𝜕(𝑟𝑣)

𝜕𝑦
= 0                                                   (10) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+ 𝜎𝑥𝐺𝑟1 5⁄ 𝜕𝑝

𝜕𝑦
+ 𝜀(1 + 𝜎𝑥

2)
𝜕𝜃

𝜕𝑦

𝜕𝑢

𝜕𝑦
+ (1 + 𝜖𝜃)(1 + 𝜎𝑥

2)
𝜕2𝑢

𝜕𝑦2
+ 𝜃           (11) 

𝜎𝑥 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) + 𝜎𝑥𝑥𝑢2 = −𝐺𝑟1 5⁄ 𝜕𝑝

𝜕𝑦
+ 𝜎𝑥(1 + 𝜖𝜃)(1 + 𝜎𝑥

2)
𝜕2𝑢

𝜕𝑦2 + 𝜖𝜎𝑥(1 + 𝜎𝑥
2)

𝜕𝜃

𝜕𝑦

𝜕𝑢

𝜕𝑦
−

𝜃𝑡𝑎𝑛𝜑                                                                                                                                          (12) 

𝑢
𝜕𝜃

𝜕𝑥
+ 𝑣

𝜕𝜃

𝜕𝑦
=

1

𝑃𝑟
(1 + 𝜎𝑥

2)
𝜕2𝜃

𝜕𝑦2
                                           (13)  

where 

𝑃𝑟 =
𝜇∞𝑐𝑝

𝑘
  𝑎𝑛𝑑 𝜀 = 𝛾

𝑞𝑤𝐿

𝑘
𝐺𝑟−1 5⁄                                   (14) 

It can easily be seen that the convection induced by the wavy surface is described by equations 

(10)-(13).  Equation (12) represents that the pressure gradient along the x direction is in the order 

of Gr -1/5. In the present problem this pressure gradient is zero because, no externally induced free 

stream exists. The elimination of p/y from equations (11) and (12) leads to  

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= (1 + 𝜖𝜃)(1 + 𝜎𝑥

2)
𝜕2𝑢

𝜕𝑦2 + 𝜖(1 + 𝜎𝑥
2)

𝜕𝜃

𝜕𝑦

𝜕𝑢

𝜕𝑦
−

𝜎𝑥𝜎𝑥𝑥

1+𝜎𝑥
2 𝑢2 +

(1−𝜎𝑥𝑡𝑎𝑛𝜑)

1+𝜎𝑥
2 𝜃             (15) 

The corresponding boundary conditions for the present problem then turn into 

𝑢 = 0, 𝑣 = 0,
𝜕𝜃

𝜕𝑦
= −

1

√1+𝜎𝑥
2

 𝑎𝑡  𝑦 = 0                                   (16a) 

𝑢 = 0, 𝜃 = 0  𝑎𝑠 𝑦 → ∞                                               (16b) 

Now, we introduce the following transformations to reduce the governing equation to a convenient 

form 

𝑋 = 𝑥, 𝑌 =
𝑦

(5𝑥)1 5⁄ , 𝑅 = 𝑟, 𝑈(𝑋, 𝑌) =  
𝑢

(5𝑥)3 5⁄                          (17a) 

𝑉(𝑋, 𝑌) = (5𝑥)1 5⁄ 𝑣, Θ(𝑋, 𝑌) =
𝜃

(5𝑥)3 5⁄                                      (17b) 

Introducing the transformations given in equation (17) into the equations (10), (15) and (13), we 

have 

(5𝑋)
𝜕𝑈

𝜕𝑋
− 𝑌

𝜕𝑈

𝜕𝑌
+ 8𝑈 +

𝜕𝑉

𝜕𝑌
= 0                                              (18) 

(5𝑋)𝑈
𝜕𝑈

𝜕𝑋
+ (𝑉 − 𝑌𝑈)

𝜕𝑈

𝜕𝑌
+ [3 +

𝜎𝑥𝜎𝑥𝑥

1+𝜎𝑥
2 (5𝑋)] 𝑈2 = [1 + 𝜀(5𝑥)1 5⁄ Θ](1 + 𝜎𝑥

2)
𝜕2𝑈

𝜕𝑌2
   

+(5𝑥)1 5⁄ 𝜖(1 + 𝜎𝑥
2)

𝜕Θ

𝜕𝑌
∙

𝜕𝑈

𝜕𝑌
 +

(1−𝜎𝑥𝑡𝑎𝑛𝜑)

1+𝜎𝑥
2 Θ         (19)                                                                                            

(5𝑋)𝑈
𝜕Θ

𝜕𝑋
+ (𝑉 − 𝑌𝑈)

𝜕Θ

𝜕𝑌
+ 𝑈Θ =

1

𝑃𝑟
(1 + 𝜎𝑥

2)
𝜕2Θ

𝜕𝑌2
                     (20) 

 The boundary conditions (16) now take the following form: 

𝑈 = 0, 𝑉 = 0,
𝜕Θ

𝜕𝑌
= −

1

√1+𝜎𝑥
2

 𝑎𝑡  𝑌 = 0                                  (21a) 

𝑈 = 0, Θ = 0  𝑎𝑠 𝑌 → ∞                                                 (21b)  

Solutions of the system of partial differential equations are obtained using the marching order 

implicit finite difference method. Equations (18)-(20) are discretized for numerical scheme using 

central difference for the diffusion term and backward difference for the convection terms. Finally, 

we get a system of tri-diagonal algebraic equations which was solved by Gaussian elimination 

method. The computation is started at X = 0.0, and then marches up to the point X = 10.0. Here, 
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ΔX = 0.005 and ΔY = 0.01 are used for the X and Y grids respectively. 

However, once we know the values of the function U, V and Θ and their derivatives, it is important 

to calculate the values of the average Nusselt number, Num from the following relation:  

𝑁𝑢𝑚(5 𝐺𝑟⁄ )1 5⁄ =
𝑋1 5⁄ ∫ √1+𝜎𝑥

2 𝑑𝑋
𝑋

0

∫ √1+𝜎𝑥
2𝑋

0  𝑋1 5⁄  Θ(𝑋,0) 𝑑𝑋

                                      (22)  

Also the skin friction coefficient is defined as  

𝐶𝑓𝑥
(𝐺𝑟)1 5⁄ /{2(5𝑥)2 5⁄ } = (1 + 𝜀(5𝑥)1 5⁄ Θ)√(1 + 𝜎𝑥

2) 
𝜕𝑈

𝜕𝑌
]

𝑌=0
                       (23) 

 The stream function for the wavy cone is defined as 

𝑢 =
1

𝑟

𝜕𝜓

𝜕𝑦
, 𝑎𝑛𝑑   𝑣 = −

1

𝑟

𝜕𝜓

𝜕𝑥
                                         (24)  

For calculating the stream function ψ, we have integrated the fluid velocity over the whole 

boundary layer, which may be defined as  

𝜓 = ∫ 𝑅(5𝑥)3 5⁄𝑌

0
𝑈 𝑑𝑌,       𝑤ℎ𝑒𝑟𝑒 𝑅 = 𝑋𝑠𝑖𝑛𝜑                              (25) 

3. Results and Discussion 

In this paper, the effect of temperature dependent viscosity on a steady two-dimensional natural 

convection laminar flow of viscous incompressible fluid along a vertical wavy cone has been 

investigated using very efficient marching order finite difference method. It is seen that the 

solutions are affected by the viscosity variation parameter, ε, as well as the amplitude of the 

waviness, a, keeping the angle of the half cone φ = 30o is fixed. Here our attention is focused on 

the effect of ε and a on the average Nusselt number Num(5/Gr)1/5, skin friction coefficient Cfx as 

well as velocity and temperature distribution fluid of the. We also show the graphical 

representation of velocity vectors, streamlines and isotherms of the flow field.  

To validate the present numerical results the skin friction coefficient and the surface temperature 

have been compared with those of Lin [23] and Pullepu et al. [24]. The detail of the comparison 

has been given in Rahman et al. [21]. The present result shows very good agreement with the 

results mentioned above.   

The numerical results are presented for the different values of viscosity variation parameter ε and 

amplitude wavelength ratio a for a suitable fluid having Prandtl number Pr = 0.7. Firstly, to 

examine the effect of ε we have considered that a = 0.3 and φ = 30o remain constant. Figure 2(a-

b) represents the non-dimensional tangential and normal velocity distribution for different values 

of ε at a fixed point x =1.0. From the tangential velocity distribution, it is found that the increasing 

value of ε decreases the tangential velocity inside the boundary layer. As viscosity is a linear 

function of temperature, increasing value of ε indicate rapid change of viscosity towards upstream, 

which causes the decrease of fluid velocity. Figure 2(b) shows that the normal velocity enhances 

with ε increases. 

Figure 3 (a) illustrates the temperature distribution for different values of ε at a fixed point x =1.0. 

It is evident from the figure that the temperature inside the boundary layer at any fixed point raises 

with ε. From the surface temperature profile on Figure 3(b), it is found that the wall temperature 

increases significantly due to the increasing value of ε. This is not surprising as the viscosity is a 

linear function of temperature.    
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Figure 2. (a) Tangential velocity distribution and (b) Normal velocity distribution at X =1.0 for Prandtl number Pr = 

0.7, a = 0.3 and φ = 30o. 

 

 

Figure 3. (a) Fluid temperature distribution at X =1.0 and (b) Surface Temperature distribution for Pr = 0.7, a = 

0.3 and φ = 30o. 

The effects of ε on the skin friction coefficient and on the average rate of heat transfer are given in 

the Figure 4(a-b) respectively. The skin-friction coefficient increases throughout the computational 

domain for increasing value of ε. Due to the increase of ε, the viscosity increases with temperature 

which results the increase of skin friction. Also, we have found that the amplitude of the skin 

friction distribution enhanced with ε. While the average rate of heat transfer goes down when ε 

increases. It is to be mentioned that the complete cycle of the wavy surface is from x = 0.0 to x = 

2. The skin-friction coefficient increases for the first quarter of the cycle (x ≈ 0 to x ≈ 0.5) and 

decreases in the second quarter (x ≈ 0.5 to x ≈ 1). From x ≈ 1.0 to x ≈ 1.5 (i.e. third quarter) skin-

friction again increase, whereas in last quarter (x ≈ 1.5 to x ≈ 2) it decreases. The skin-friction 

coefficient showed the similar characteristic throughout the domain. 

Figure 5 (a-c) shows the isotherm for a wavy cone, while the viscosity variation parameter ε are 

taken as 0.0, 0.5 and 1.0 respectively. These figures indicate that with the increase of ε, the 

thickness of thermal boundary layer increases slightly. 
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Figure 4. (a) Skin friction coefficient and (b) Average rate of heat transfer for Pr = 0.7, a = 0.3 and φ = 30o. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 5. Isotherm for different values of ε for a wavy cone with a = 0.3, φ = 30o and Pr = 0.7. 
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reaches to its maximum far away from the surface comparing the case for flat cone. The normal 

velocity also reduces significantly with the increasing value of the amplitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Velocity vectors for different values of ε for a wavy cone with a = 0.3, φ = 30o and Pr = 0.7. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. (a) Tangential velocity distribution and (b) Normal velocity distribution at X =1.0 for Prandtl number    

Pr = 0.7, ε = 0.5 and φ = 30o. 
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amplitude. It shows that the fluid temperature distribution is more sensitive to higher value of the 

amplitude. For lower value of the amplitude, temperature profile shows sharp decrease compared 

to the larger value of a. The effect of amplitude of the wavy surface on the surface shear stress in 

terms of the skin friction coefficient is given in the Figure 8(b). It is seen that the skin friction 

coefficient exhibits a sinusoidal behavior along the wavy surface. At every crest and trough, skin 

friction coefficient increases with the increasing value of a. But at the point of inflexion of the 

wavy surface, skin friction coefficient reduced significantly for a wavy surface with high 

amplitude. When the surface of the cone is not flat ( ) the component of the buoyancy force 

along the cone is reduced by the factor , as shown in equation (19) from its 

maximum value of a flat cone. Consequently, the rate of skin friction and rate of heat transfer are 

reduced.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. (a) Fluid temperature distribution at X =1.0 and (b) Skin friction coefficient for Pr = 0.7, ε = 0.5 and          

φ = 30o. 
 

 

 

 

Figure 9. Streamlines for different values of a where Pr = 0.7, ε = 0.5 and φ = 30o. 
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Streamline pattern for a flat cone and wavy cone with amplitude a = 0.3 and a = 0.5 are illustrated 

in the Figure 9, while Figure 10 shows the effect of surface amplitude on the isotherms.  Within 

the computational domain for flat cone, the maximum value of stream function Ψmax= 0.246. While 

for a wavy cone with amplitude a = 0.3 and a = 0.5, Ψmax is 0.276 and 0.309, respectively. Which 

indicate that the value of stream function enhances with the amplitude of the wavy cone and 

causing thicker momentum and thermal boundary layer. It is also found that unlike to the flat cone, 

the isotherm for wavy cone shows a sinusoidal behavior. These figures clearly show that the 

thickness of thermal boundary layer increases significantly as the amplitude of the wavy surface 

increases. 

 

Figure 10. Isotherms for different values of a where Pr = 0.7, ε = 0.5 and φ = 30o. 
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Similar phenomenon was noted with the increase of amplitude of the surface waviness. 

 Fluid temperature and surface temperature were found to enhance with ε.  
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 It was found that, streamlines change significantly with the increasing value of amplitude. 

Also, the maximum value of stream function enhances with increases of the waviness 

amplitude 

The results show that without considering viscous effect may introduce sever error in the 

prediction of the surface rate of heat transfer and skin friction coefficient. 
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