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Abstract 

The present study was undertaken to predict the temperature profiles for a binary 

system (methanol-water) at various operating conditions using artificial neural 

network in a natural circulation vertical tube thermosiphon reboiler. The heat flux 

values ranged from about 4.1 to 43.0 kW/ m2. The liquid submergence levels were 

maintained around 100, 75, 50 and 30%. Two main operating parameters namely 

heat flux and liquid submergence affecting the wall temperature profiles were 

considered as inputs, while the output parameter was temperature profiles. The 

network was then trained to predict the wall temperature profiles as outputs. A 

feed-forward back-propagation network was developed and trained using 

experimental data from the literature. It was observed that the predicted values are 

in very good agreement with the measured ones indicating that the developed 

model is fairly accurate and has the great ability for predicting the temperature 

profiles. If more exhaustive input data are fed: heat flux, submergence and mass 

percent then the capability of the network to predict the temperature profile would 

had been better. The predicted temperature profiles yielded the relative error of the 

order of 0.1% in majority of the cases. 

Keywords: Artificial neural network; Temperature profiles; Natural circulation 

loop; Thermosiphon reboiler; Methanol-Water 

1. Introduction

Vertical tube thermosiphon reboilers are most widely used in chemical, petroleum and 

petrochemical industry. These are characterized by high heat transfer rate and low fouling 

tendencies. Such type of reboiler is very reliable, easy to setup, lower operating costs and has 

compact dimensions. Few studies have been conducted to investigate the hydrodynamics and heat 

transfer aspect of natural circulation boiling of single component liquids/ binary liquid mixtures in 

vertical tubes. Most of the studies reported are under the conditions of uniform wall temperature 

heating with saturated liquids. Few studies for constant wall flux heating are also reported in the 

literature. Prediction of boiling incipience, circulation rate and heat transfer to boiling liquids are 

important parameters in the design and operation of vertical thermosiphon reboilers [1-8].  

Artificial neural network like humans, learn by example and past experience. ANNs are being 

applied to an increasing number of real world problems of large complexity and offer ideal 

solutions to a variety of problems such as signal recognition, function prediction and system 

modeling where the physical processes are not understood or are highly complex. ANNs are 

relatively crude electronic models based on the neural structure of the human brain. These models 
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may take the form of mathematical equations as created by both scientist and engineers. ANNs 

represent a complex configuration, which includes many simple processors (artificial neurons), 

arranged in layers (input, hidden and output layers) connected in a particular fashion. The proper 

transformation of information is possible as a result of a correctly prepared matrix of weights 

(which are numbers) attributed to all inter-neuron connections. In Multi Layer Perceptron (MLP) 

feed forward networks, each neuron simply sums up (properly amplifies or weakens) the weighted 

signals from all neurons of the previous layer with some threshold value called biases. The 

resulting values are transformed through suitable activation functions which are known as signum 

functions. Thus in order to prepare a network for solving a task, values of the weight of each 

connection must be adjusted. The adjustment of these values is the main and most important part 

of modeling with ANN’s, which is called as ‘learning procedure’ and is carried out by means of 

an algorithm. The learning process is executed on the basis of input data sets associated with the 

output sets. During the learning process, the computer software compares the calculated values 

with the expected ones, and adjusts the values of the weights and biases to reach the best agreement 

between the input and output in a step by step approach. The non-linear optimization is used for 

updating the weights and biases till the output values for each pattern become close to the target 

values. After extensive training, the network will eventually establish the input-output 

relationships through the adjusted weights and biases of the network. 

Artificial neural networks (ANNs) have been used in many engineering applications because of 

providing better and more reasonable solutions. Most chemical engineering problems are nonlinear 

and complex with conventional modeling and simulation techniques relying often on certain 

simplifying transport, kinetic and /or thermodynamic assumptions. ANN process models are more 

cost effective and eliminate the need for detailed effort. These have been successfully employed 

in solving problems in areas such as: analysis of thermosiphon solar water heaters, heat transfer 

data analysis, HVAC computations and prediction of critical heat flux among others. Cladio et al. 

[9] used neural network approach for optimization of industrial chemical processes. The 

procedures for training and testing the ANN and its history can be found in the text by Haykin and 

others [10-14]. Such non-linear mapping enables the ANNs to estimate any function without the 

need of an explicit mathematical model of the physical phenomenon. Kalogirou [15] used ANNs 

for performance prediction of forced circulation type solar domestic water heating, Lin and Tseng 

[16] for optimal design using ANN by taking the example of bicycle derailler system. 

Pandharipande et al. [17] studied for optimizing ANN network for shell and tube heat exchanger. 

Farshad et al. [18] used an ANN algorithm for predicting temperature profiles in producing oil 

wells. Cabassud and Le Lann [19], Islamoglu and Kurt [20] used ANNs for heat transfer analysis 

in corrugated channels. Tianqing Liu et al. [21] developed a model to evaluate and predict boiling 

heat transfer enhancement using additives. The proposed model was based on the molecular 

structures of the additives and uses ANN technology. Heydari et al. [22] predicted hydrate 

formation temperature for natural gas using artificial neural network. Recently Hakeem and Kamil 

[23-27] predicted temperature profiles, circulation rate; heat transfer and wall superheat for water 

in a vertical thermosiphon reboiler using ANN. Sreekanth et al. [28] used neural network approach 

for evaluation of surface heat transfer coefficient at the liquid solid interface. Pouraliakbar et al. 

[29] used a neural network with feed forward topology and back propagation algorithm to predict 

the effects of chemical composition and tensile test parameters on hardness of heat affected zone 

(HAZ) in X70 pipeline steels. Khalaj et al. [30] developed an artificial neural network-based model 

(ANNs) to predict the layer thickness of pre-nitride steels using seventeen parameters affecting the 

layer thickness were considered as inputs, including the pre-nit riding time, salt bath compositions 
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ratio, salt bath aging time, ferrochromium particle size, ferrochromium weight percent, salt bath 

temperature, coating time, and different chemical compositions of steels. The network was then 

trained to predict the layer thickness amounts as outputs. A 2-feed-forward back-propagation 

network was developed and trained using experimental data form literature. Faizabadi et al. [31] 

applied the artificial neural networks with multilayer feed forward topology and back propagation 

algorithm containing two hidden layers to predict the effect of chemical composition and tensile 

properties on the both impact toughness and hardness of microalloyed API X70 line pipe steels. 

Further Khalaj et al. [32] presented some results of the research connected with the development 

of new approach based on the artificial neural network (ANN) of predicting the transformation 

start temperature of the phase constituents occurring in five steels after continuous cooling. Nazari 

et al. [33] predicted compressive strength of geopolymers made from seeded fly ash and rice husk–

bark ash by adaptive network-based fuzzy inference systems (ANFIS). Different specimens, made 

from a mixture of fly ash and rice husk–bark ash in fine and coarse forms and a mixture of water 

glass and NaOH mixture as alkali activator, were subjected to compressive strength tests at 7 and 

28 days of curing. According to input parameters in the ANFIS models, the compressive strength 

of each specimen was predicted. The training and testing results in ANFIS models showed a strong 

potential for predicting the compressive strength of the geopolymeric specimens. Chakrabarti and 

Sastry [34] used an artificial neural network (ANN)-based novel technique to determine the liquid-

liquid flow regime. This approach uses phase superficial velocities as input parameters, which are 

obtained from a specific set of data obtained from experimental investigations. Both experimental 

and ANN-based determinations of liquid-liquid flow pattern have been undertaken for a common 

data set and the results are compared to prove the effectiveness of ANNs in pattern recognition. A 

unique ANN architecture is identified with three hidden layers, and the inputs and outputs are 

modeled into binary form. Levenberg-Marquardt (LM) learning algorithm is used for training 

neural network. Azizi and Karimi [35] developed a three–layer artificial neural network (ANN) 

model to predict the pressure gradient in horizontal liquid–liquid separated flow. A total of 455 

data points were collected from 13 data sources to develop the ANN model. Superficial velocities, 

viscosity ratio and density ratio of oil to water, and roughness and inner diameter of pipe were 

used as input parameters of the network while corresponding pressure gradient was selected as its 

output. Levenberg–Marquardt back–propagation algorithm was applied to train the ANN. The 

optimal topology of the ANN was achieved with 16 neurons in hidden layer, which made it 

possible to estimate the pressure gradient with a good accuracy. In addition, the results of the 

developed ANN model were compared to Al–Wahaibi correlation and it is found that the proposed 

ANN model has higher accuracy. Finally, a sensitivity analysis was carried out to investigate the 

relative importance of each input parameter on the ANN output. Shirley and Chakrabarti [36] used 

ANN in liquid-liquid two phase flow. Further few workers [37, 38] employed ANN for the 

prediction of surface tensions of binary mixtures, estimating sulphur content of hydrogen sulphide 

at elevated temperatures and pressures. 

Thus it is understood from the literature that ANNs better serve to thermal analysis in engineering 

applications.  

Thus it is clear that limited work has been reported in the literature on the application of artificial 

neural networks to boiling heat transfer in analysis in a vertical thermosiphon reboiler. Therefore, 

present study has been carried out on the applicability of ANNs for predicting temperature profiles 

in a vertical thermosiphon reboiler. In view of the above it has been planned to undertake a 

systematic study to develop a new model based on ANNs for the prediction of wall temperature 
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profiles for a binary liquid mixture in a vertical thermosiphon reboiler. The experimental data from 

literature was first preprocessed. Using this data, the formulation of an ANN model was made.  

2. Experimental Apparatus and Procedure  

The experimental facility consisted of a natural circulation reboiler loop with a condenser and 

cooling system, power supply system and required instrumentation as shown in the schematic 

diagram in Fig. 1. The main unit was a U shaped circulation loop made up of two long vertical 

tubes connected together with the bottom by a short horizontal stainless tube, while the upper ends 

are connected to a vapor liquid separator and the condenser. One of the vertical tubes is electrically 

heated and served as the test section. The liquid enters the tube at its bottom end, get heated and 

rises upwards with subsequent boiling. The vapor liquid mixture enters the separator from where 

the vapors go to the condenser for total condensation. The condensate and the liquid from the 

separator were directed towards the top of the other tube serving as down flow cold leg. The entire 

liquid from the cold leg ultimately entered the test section through a view port. The vapor liquid 

separator was a cylindrical vessel with a tangential entry of the two-phase mixture in the middle. 

The vapors were condensed by means of two water-cooled condensers used in series. The primary 

condenser was a spiral coil fitted just below the top cover of the condenser vessel. The 

condensation took place at the outer surface of the coil and condensed liquid drained down the 

bottom of the condenser vessel through a vertical tube fitted with a liquid level indicator. A 

thermocouple was also inserted in this tube to measure the condensate temperature. The 

uncondensables, if any, from the primary condenser entered the helical coil of the secondary 

condenser. The exit of the condenser was connected to a glass tube with its free end dipped into a 

bottle containing the test liquid so as to provide effective visual observation of the removal of 

traces of dissolved air from the test liquids during initial boil off. A centrifugal pump and storage 

tank arrangement connected to freshwater supply was used for circulating water in the condensers.  

To measure the total rise in temperature of the cooling water, thermocouple probes of copper-

constantan were located at the inlet of the secondary condenser and the outlet of the primary 

condenser. In order to control the inlet liquid temperature to the test section, the liquid down flow 

pipe was jacketed from the lower end up to a height of 1000 mm, using a pipe of 80 mm I.D. in 

which cooling water was passed as and when needed. The inlet and outlet temperatures of the 

water in the jacket were measured by means of thermocouple probes fitted therein. The 

temperature of the test liquid exiting from the down flow pipe and entering the horizontal pipe was 

measured by another thermocouple probe inserted at the bottom of the down flow pipe. The level 

of the test liquid in the down flow pipe (submergence) was indicated by a glass tube level indicator. 

This level acted as the driving force for the circulation of liquid through the loop.  

Prior to the start of the experimentation, the setup was hydraulically tested for leaks. It was flushed 

with distilled water for through cleaning and finally filled with it upto the top of the test section. 

The connections to the power supply, thermocouples and various measuring instruments were 

made and checking their calibration ensured the satisfactory performance of these. Power was 

supplied to the test section and circulation system. Simultaneously, cooling water supply was 

activated thereby ensuring adequate amount of cooling water to the condensers. Drain cocks were 

provided at the inlet of test section and exit of the separator and condenser. The entire set up was 

thoroughly lagged with asbestos rope and glass wool and finally covered with a thin aluminum 

sheet to reduce the heat losses, which were less than ± 2.5%. This step was essential for the 

reproducibility of data. Extreme care was taken that once the tube wall got stabilized, it must 

remain fully submerged with the liquid as the dry surface was very liable to entrap a thin film of 
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air. This air on heating leaves the surface as tiny bubbles and joins the liquid, thereby setting up 

micro convection near the surface, resulting in additional extraneous turbulence causing error. 

During startup for conducting a series of runs, the test liquid was boiled off for about 6-8 hours to 

remove the last traces of dissolved air that was indicated by the cessation of air bubbles in the 

bubbler. After this, the desired heat flux was impressed upon the test section by proper adjustment 

and cooling water flow rate was maintained. Adding or draining the necessary amount of test liquid 

maintained the liquid level in the down flow pipe. When steady state conditions were established, 

reading of thermocouples, various electrical instruments and rotameters were recorded. The liquid 

level in the down flow pipe was observed and noted from the glass tube level indicator. While 

keeping the inlet liquid level and submergence unchanged, readings were taken for different heat 

fluxes in increasing order. Other details of reboiler and cooling system along with its operating 

procedure are described in detail elsewhere in literature [39]. 

The thermocouples were connected to a multi-logger (Model 56-7501 Iwatsu, Japan), through two 

selector switches of 24 and 12 points each. The temperatures were read directly from the 

multilogger. It had a built in arrangement for reference point temperature compensation, accuracy 

of + 0.5 (23 oC + 5 oC, 80% RH) and + 1.5 oC (0 to 50 oC) below 60% RH). Worst resolution for 

copper constantan thermocouple was 0.1 oC and accuracy was + 0.2 of full scale. Flow rates of 

cooling water to the condenser and the jacket were measured by two calibrated rotameters of 0-15 

lit/min range.  

3. ANN Methodology 

ANNs are able to produce a set of outputs for a given set of inputs according to some mapping 

relationship. During training period such relationship is coded into the network structure 

depending upon the network parameters. The number of hidden layers and nodes may vary in 

different applications and depend on the user specifications. No specific technique is available to 

decide the optimum number and it is usually carried out through trial and error procedure.  

To train and test the neural networks, input data patterns and corresponding targets are required. 

In developing an ANNs model, the available data [39] are divided into two sets: the network is 

trained using the first data set and then it is validated with the remaining data. The training of the 

network is carried out by comparing the output with the target by continuously updating the 

weights and biases of the same. Thus the configuration of the ANNs is set by selecting the number 

of hidden layers and the number of nodes in it. The number of nodes in the input and output layer 

are governed by the input and target data. The main advantage of neural network over conventional 

regression analysis is: free of linear supposition, large degrees of freedom and more effectively 

deal with nonlinear functional forms. Therefore, in the present work multi layered feed forward 

network with the back propagation algorithm have been used for the prediction of temperature 

profiles in a vertical thermosiphon reboiler. The Newton-Raphson optimization technique is 

employed to minimize the error. For training the networks, the goal was fixed based on MSEREG 

as 1. For input and hidden layers, tanh sigmoidal function and linear function for the output layer 

was taken. It is evident from the data that the temperature profile is highly dependent on heat flux, 

submergence and mass percent. 
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1  Test section 12 Liquid thermocouple probes 

2 Copper clamps 13 Liquid level indicator 

3 View-port for inlet liquid 14 Condenser down-flow pipe 

4 Glass tube section 15 Removable screwed cap 

5 Vapor-liquid separator 16 Feeding funnel 

6 Primary condenser 17 Auxiliary heater 

7 Spiral coil 18 Rotameters 

8 Secondary condenser 20 Cold water tank 

9 Liquid down-flow pipe V1-V3 Control valves 

10 Cooling jacket C1-C4 Drain cock valves 

11 Wall thermocouples   
 

Figure 1. Schematic diagram of the experimental setup 

4. Modeling by Artificial Neural Networks (ANN)  

In the first step, inputs and outputs must be specified, such that inputs must have a theoretical 

relation to outputs; otherwise there will be problems encountered in the training procedure.  

A reliable database is critically important for training and testing of an ANN. Experimental data 

on wall temperature profiles of methanol-water system has been taken from the literature [39]. In 

order to avoid over-fitting problems that threaten the generalization capabilities of ANNs, the 

experimental data have been categorized into training and testing sets. The training set has been 

used for determination of optimum weight factors as well as biases leading to minimum error. In 

order to check the prediction ability of the trained ANN, a number of the experimental data have 

been randomly excluded from the training sets better known as testing sets. The testing set (25% 

of remaining experimental data) has been used to gauge the efficacy of the training. In the next 
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step, the type of network, the number of layers and the activation function of each layer must be 

defined; this step is the most important and challenging step in designing and training an ANN. 

Generally, it is done through a trial and error procedure. Broyden, Fletcher, Goldfarb and Shanno 

(BFGS), has been used for the training procedure. The specifications of the selected ANN have 

been presented in the results and discussion section. 

There are several classes of neural network architectures, classified according to number of layers, 

neurons and their interconnections such as: single layer feed forward networks, multilayer feed 

forward networks and recurrent networks. A multilayer feed forward network as shown in Fig. 2 

have three hidden layers having five neurons each, one input layer of three neurons and one output 

layer of single neuron. Number of neurons in input and output layer is governed by type of input 

and target fed to the network. The nodes perform non-linear input-output transformations by means 

of sigmoid activation function. These are given in the following equations: 
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MATLAB 6P5 was used to perform ANN calculations. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A typical architecture of ANN 
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Table 1 show the range of experimental values in the present study. There are 99 temperature 

profiles corresponding to different values of heat flux submergence and mass percent of methanol. 

The training was done for three types of ANN structures. The experimental data at these parameters 

show the variation of wall temperature along the length of test section [39]. For a particular mass 

percent of methanol and submergence levels the network was trained with heat flux as input and 

temperature profile as an output.  

Table 1. Range of experimental parameters 

System Heat flux, q x 10 -4  

[W m-2] 

Submergence 

 S [%] 

Concentration, X [wt.%] 

Distilled water  0.57-4.3 30, 50, 75, 100 100 

Methanol 0.41-2.1 30, 50, 75, 100 100 

Methanol-water 0.57 2.9 30, 50, 75, 100 5, 10, 18, 26, 30, 38, 58 

Table 2 shows the training and test data for 5 mass percent of methanol at 100% submergence Thus 

for a given mass percent and submergence the temperature profiles were obtained at desired heat 

flux. This way the 99 networks were trained. The next network in which heat flux and submergence 

was input; the temperature profile was the output. The versatility of it to predict the temperature 

profile enhanced significantly. Thus corresponding to each mass percent of methanol, the 

temperature profile can be deduced by feeding the heat flux and submergence. 

Table 2: Training and test data at 100% submergence and 5 mass percent methanol with heat flux as input 

Training data Test data 

Distance 

along test 

section Z, 

m 

Input Heat flux W/m2  Input Heat flux W/m2 

8215 21305 29516  16599 

Output Temperature 0C  

Output Temperature,0C 
Percentage 

error Experimental 
AN N 

simulated 

0.05 100.3 103.4 106.5  102.7 103.17 -0.46 

0.1 102.2 104.2 107.6  103.9 103.9 0 

0.15 103.3 105.4 108.5  104.9 105.52 -0.59 

0.2 104.4 107.8 109.5  106.8 107.69 -0.83 

0.3 105.1 106.2 110.5  107.3 106.22 1.01 

0.4 104.9 106.9 110.2  107.9 106.79 1.03 

0.5 104.6 106.4 110.0  107.6 106.36 1.15 

0.6 104.7 106.4 108.1  107.0 106.41 0.55 

0.7 104.6 105.8 108.4  106.2 105.61 0.56 

0.8 104.2 105.8 108.3  105.4 105.98 -0.55 

0.9 103.8 105.0 108.3  105.0 104.91 0.09 

1.0 103.6 104.6 109.0  104.4 104.58 -0.17 

1.1 103.3 104.0 108.3  104.0 103.84 0.15 

1.2 103.3 103.4 106.6  103.4 103.45 -0.05 

1.3 102.9 103.2 105.7  103.2 103.04 0.16 

1.4 101.9 102.8 104.4  102.8 102.84 -0.04 

1.5 101.5 102.4 103.2  102.4 102.16 0.23 

1.7 100.8 102.4 102.8  101.9 102.48 -0.57 

1.8 99.8 102.2 102.9  101.6 102.42 -0.81 

1.85 99.7 102.6 102.6  101.6 102.45 -0.84 
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Table 3(a). Training data at 5 mass percent of methanol with heat flux and percent submergence as input 

 

 

Input  

Heat flux W/m2 

8215 21305 29516 16599 21305 

 

29516 8215 16599 21305 21305 29516 Distance 

along test 

section, Z, m Input 

Submergence, % 

100 100 100 75 75 75 50 50 50 30 30 

Output  

Temperature, oC 

100.3 103.4 106.5 103.1 103.6 108.2 101.2 108.7 108.9 113.7 120.7 0.05 

102.2 104.2 107.6 104.0 105.8 109.5 103.5 110.7 114.4 114.1 117.6 0.1 

103.3 105.4 108.5 107.4 106.0 109.8 105.2 117.3 115.5 108.1 116.0 0.15 

104.4 107.8 109.5 108.0 106.8 107.5 106.7 114.5 116.3 106.8 111.9 0.2 

105.1 106.2 110.5 105.4 108.4 107.7 109.1 113.3 117.8 105.8 107.8 0.3 

104.9 106.9 110.2 105.5 109.6 107.6 105.4 108.2 109.6 105.4 107.2 0.4 

104.6 106.4 110.0 106.2 109.4 107.3 103.2 104.4 109.0 105.2 107.0 0.5 

104.7 106.4 108.1 106.4 108.0 107.3 102.5 103.6 106.7 105.4 106.6 0.6 

104.6 105.8 108.4 106.4 108.0 106.4 102.3 103.3 105.2 105.3 106.4 0.7 

104.2 105.8 108.3 106.6 105.9 106.8 102.1 102.9 104.4 105.4 106.4 0.8 

103.8 105.0 108.3 105.2 104.2 105.8 102.1 102.6 103.4 105.3 106.4 0.9 

103.6 104.6 109.0 104.4 103.6 105.2 102.2 102.8 104.0 105.4 106.4 1.0 

103.3 104.0 108.3 104.2 102.9 104.6 102.2 102.6 104.2 105.5 106.6 1.1 

103.3 103.4 106.6 104.4 102.4 103.4 102.2 102.5 103.9 105.5 106.9 1.2 

102.9 103.2 105.7 102.4 101.7 102.6 102.2 102.4 103.8 105.4 106.5 1.3 

101.9 102.8 104.4 101.8 101.6 102.4 102.1 102.3 103.7 105.6 106.8 1.4 

101.5 102.4 103.2 101.4 101.5 102.3 102.1 102.2 103.4 105.8 107.0 1.5 

100.8 102.4 102.8 100.9 101.4 101.9 101.6 101.8 103.6 105.4 106.9 1.7 

99.8 102.2 102.9 100.8 101.2 101.6 101.5 101.7 103.5 105.4 106.6 1.8 

99.7 102.6 102.6 100.4 100.9 101.5 101.4 101.6 103.3 105.2 106.5 1.85 
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Table 3(b). Test data at 5 mass percent of methanol with heat flux and percent submergence as input 

 

Table 3(a) and 3(b) give the training and test data at 5 mass percent of methanol, with input and 

output as mentioned above. In the third network, heat flux, mass percent and submergence were 

chosen as input while yielding the temperature profile as output. Hence only one network training 

was sufficient for whole range of data. Table 4 represents the test data with three variables as input. 

The single hidden layer was chosen with the number of nodes 40 for the entire three networks. In 

the network 1, heat flux was input and temperature profile was output, hence the number of neurons 

in input and output layer was 1 and 20 where as in the network 2, heat flux and submergence were 

input and the temperature profile was the output (so the number of neurons in input and output 

layer were 2 and 20). In the network 3, heat flux, submergence and mass percent were input and 

temperature profile was output, hence the number of neurons in input and output layer was 3 and 

20 respectively. 

Figure 3 shows the comparison of predicted and experimental temperature profiles with heat flux 

as input at 5 mass percent of methanol. In this plot the heat flux of is a test data, while the remaining 

three were taken as training data at 100% submergence level. This figure shows very good 

prediction with maximum error of the order of 1.0 %. The training data and test data are shown in 

Table 2.  

Figure 4 shows the comparison of temperature profiles with heat flux 21305 W/m2 as input at 5 

mass percent methanol and S=50%.  

Figures 5 and 6 were drawn on the same premise except the mass percent of methanol which was 

taken as 17. The prediction in figure 5 yielded unsatisfactory performance due to extrapolated 

value of test data. This has the maximum error of around 15%. While in figure 6 the prediction 

was satisfactory due to test value were in training range. 

Distance 

along test 

section 

Z, m 

Input, Heat flux, 

W/m2 
16599 16599 8215 8215 29516 29516 25241 25241 

Input 

submergence, %  
100 100 75 75 50 50 30 30 

 Exp. ANN Exp. ANN Exp. ANN Exp. ANN 

0.05 Output 

Temperature T, 
0C 

102.7 101 110.9 117.6 103.9 99.8 110.5 118.1 

0.1 103.9 103.3 115.4 115.6 104.8 100.5 114.7 116.4 

0.15 104.9 105.2 116 109.2 108.6 102.5 117 112.9 

0.2 106.8 107.2 117.2 107.4 109.4 103.7 116.2 109.9 

0.3 107.3 107.8 118.4 106.4 107.4 104.3 117.9 107.1 

0.4 107.9 108.2 115.6 106 106.7 105 110.5 106.6 

0.5 107.6 105.5 111.5 105.8 106.5 104.2 108.6 106.4 

0.6 107 105.6 109.9 105.8 106.1 104.3 106.3 106.3 

0.7 106.2 104.4 108.6 105.7 106.4 104.2 105.1 106 

0.8 105.4 104.1 107 105.9 106.6 104 104.5 106 

0.9 105 105.4 105.4 106.1 106.4 103.6 103.9 106.1 

1.0 104.4 104.3 105.4 106.1 106.5 103 104.6 106.1 

1.1 104 104.2 105.1 106.3 106.2 102.7 104.6 106.3 

1.2 103.4 103.8 105 106.1 106 102.6 103.6 106.4 

1.3 103.2 101.7 105.2 106 104.3 102 103.7 106.1 

1.4 102.8 101 105.2 106.5 103.2 101.4 103.8 106.4 

1.5 102.4 101.2 105.2 106.7 102.2 101.3 103.4 106.5 

1.7 101.9 100.9 105.1 106.1 101.6 100.6 103.6 106.3 

1.8 101.6 100.4 104.9 106 101.4 100 103.6 106.2 

1.85 101.6 100.4 104.8 105.9 101.1 99.9 103.5 106 
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Table 4. Test data with heat flux, percent submergence and mass percent of methanol as input and temperature profile as output 

 

 

 

Distance 

along test 

section  

Z, m 

Input 

Heat flux , 

W/m2 

16599 16599 25241 25241 12289 12289 12289 12289 21305 21305 25241 25241 8215 8215 21305 21305 

Percent 

Submergence,  

100 100 75 75 50 50 100 100 50 50 30 30 100 100 50 50 

Methanol 

mass fraction,  

 X 

5 5 10 10 17 17 26 26 26 26 30 30 38 38 58 58 

Output Temperature, 0C 

 Exp. ANN Exp. ANN Exp. ANN Exp. ANN Exp. ANN Exp. ANN Exp. ANN Exp. ANN 

0.05  102.7 103.2 105.8 105.9 102.2 100.3 92.5 93.5 97.4 103.7 99 103.4 88.5 91.6 103 101.7 

0.1 103.9 104.4 108.4 108.5 105.4 101.7 93.8 94.2 98 105.6 99.3 104.3 89 93.1 104.8 105 

0.15 104.9 105.3 111.8 109.8 107.9 103.4 95.4 95.4 99.8 107.2 99.4 104.6 89.9 93.7 107.2 107.2 

0.2 106.8 106.1 112.2 110.8 107.4 102.9 96.7 96.5 98.2 106.1 99.5 106.1 91.6 94.5 108.9 106.5 

0.3 107.3 106.4 108.3 111.9 103.2 102.8 98.5 97.9 98 104.2 99.8 107.1 92.4 95.7 108 104.9 

0.4 107.9 106.6 108.2 113.4 97.1 99.9 98.9 99.3 97.4 102.2 100 108.1 93.9 97.4 103.6 102.2 

0.5 107.6 107.4 108.6 113.7 96.4 97.5 100.2 101.9 96.7 99.4 100.1 107.9 94.4 98 93.9 93.3 

0.6 107 107.5 115.2 114.1 96.6 96.7 103.3 104 96.6 97.2 100.4 105 95.2 98.8 87.6 88.6 

0.7 106.2 107.6 110.8 114.2 96.9 96.5 106 105.5 96.5 96.7 100.6 104.7 95.4 99.6 86.4 85.9 

0.8 105.4 107.9 109.2 113.4 96.8 97.2 106.6 107 96.3 96.4 100.8 105.5 95.9 100.3 85.7 84.7 

0.9 105 107.1 107.1 111.5 96.8 96.3 108.2 106.4 95.2 95.3 100.8 104.4 96 101.2 85.6 84.4 

1.0 104.4 107.2 106.9 110.4 96.6 95.8 108.7 106.5 93.5 94.2 101.1 104.9 96.2 102 85.4 84.9 

1.1 104 106.5 106.3 107.2 96.7 96.8 108.1 106.5 93.1 94.8 101.2 104.2 95.1 99.6 85.2 84.3 

1.2 103.4 105.7 103 105.1 96.9 96.6 95 103.7 93 94.4 101.4 104.6 95 98.6 85.2 85.2 

1.3 103.2 104.5 102.2 103.9 96.8 95.8 92.2 99.2 93.2 93.5 101.6 105.6 93.8 97.3 85.1 85.6 

1.4 102.8 103.8 102.1 104.3 97.1 95.5 91.1 97.6 93.6 93.3 101.8 105.4 92.4 95.6 85.1 85.5 

1.5 102.4 103.2 101.9 102.3 97.2 95.7 90.3 96.1 94.8 93.9 102 105.5 88.8 95.2 85.2 85.7 

1.7 101.9 101.6 101.3 100.7 97.1 95.7 89.1 92.2 93.7 94.3 101.8 104.1 87.7 90.5 85.7 86.1 

1.8 101.6 101.3 101.2 100.5 97 95.5 88.9 92 93.6 94.2 101.7 103.9 87.4 90.3 85.6 86.1 

1.85 101.6 101.1 101 100.4 97 95.4 88.8 91.7 93.5 94.1 101.6 103.6 87.2 90.1 85.4 85.9 
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Figure 3. Comparison of experimental and ANN simulated temperature profile at 5 mass percent of methanol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison of experimental and ANN simulated temperature profile at 5 mass percent of methanol 
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Figure 5. Comparison of experimental and ANN simulated temperature profile at 17 mass percent of methanol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Comparison of experimental and ANN simulated temperature profile at 17 mass percent of methanol 
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Figure 7. Comparison of experimental and ANN simulated temperature profile at 5 mass percent of methanol with 

heat flux and submergence as input 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Comparison of experimental and ANN simulated temperature profile with heat flux  

 Submergence and mass percent as input 
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Figures 7 and 8 show the good matching of the experimental data by using the network 2 with 

error less than 1% except at the onset of the boiling region. 

Tables 3 (a) and 3 (b) show the training and test data to predict the temperature profiles using the 

network type 2.  

Figure 9 shows the plots for third type of network. A good matching is also observed in these plots 

having maximum error less than 5%. For all predictions the mean absolute deviation was found to 

be less than 0.8%.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9. Comparison of experimental and ANN simulated temperature profile at 17 mass percent of methanol with 

heat flux and submergence as input 

5. Conclusions 

In the present study, ANN models were developed for the prediction of temperature profile for methanol-

water system in a vertical thermosiphon reboiler. The temperature profiles were predicted and compared 

with experimental data for all the four submergence levels at different methanol concentration. Network 1 

has applicability at the particular submergence level while network 2 operates on wider range of data and 

more versatility. In case of heat flux, submergence and mass percent as input in the network 3, only one 

training is required for a particular system and hence most robust in nature. For all predictions the mean 

absolute deviation was found to be less than 0.8%.  
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