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Abstract 

Reverse Osmosis (RO) desalination plants are highly nonlinear multi-input-

multioutput systems that affected by uncertainties, constraints and some physical 

phenomenon such as membrane fouling that are mathematically difficult to describe. 

Such systems require effective control strategies that take these effects into account. 

Such a control strategy is the nonlinear model predictive (NMPC) controller. However, 

a NMPC depends very much on the accuracy of the internal model used for prediction 

in order to maintain feasible operating conditions of the RO desalination plant. 

Recurrent Neural Networks (RNNs), especially the Long-Short-Term Memory 

(LSTM) can capture complex nonlinear dynamic behavior and provide long-range 

predictions even in the presence of disturbances. Therefore, in this paper a NMPC for 

a RO desalination plant that utilizes a LSTM as the predictive model will be presented. 

It will be tested to maintain a given permeate flow rate and keep the permeate 

concentration under a certain limit by manipulating the feed pressure. Results show a 

good performance of the system. 

Keywords: Desalination, Model Predictive Control, Artificial Intelligence, Long 

Short Term Memory Neural Network, Reverse Osmosis. 

Nomenclature 

TDS total dissolved solids   (g/L) 

LQR linear quadratic regulator  

LSTM long short term memory neural network 

NMPC   Nonlinear model predictive controller 

RNN Recurrent Neural Networks 

RO Reverse osmosis 

PID Proportional integral derivative controller 

SMC sliding mode control  

 

1. Introduction 

Recently, there have been an increased interest and commercialization of desalination systems due 

to significant improvement in technology and the advantageous developments in membrane 

technology. The dynamics of an RO desalination system are highly nonlinear, constrained and 

subject to uncertainties such as membrane fouling and varying feed water quality. Therefore, the 

design of a suitable controller for the RO desalination system is a very challenging task. 

There have been several approaches for controlling nonlinear systems in general such as the linear 

quadratic regulator (LQR) [1], Proportional integral derivative controller (PID) [2], backstepping 

control [3] and sliding mode control (SMC) [4]. Nevertheless, all these techniques usually do not 

take into account the actual constraints of the process and just consider the control effects. 

Furthermore, the parameters of the controllers are chosen aimlessly, hence the optimality of the 

system cannot be guaranteed. 

Model predictive control have been applied to control RO desalination processes [5-9]. It is 

obvious that the performance of the model predictive controller largely depends on the quality of 
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the predictive model used, especially if the system is complex and highly nonlinear. Several 

techniques have been used for system identification for the MPC, e.g., Kalman filtering[10], 

maximum likelihood estimation[11-12]. However, it is known that the Kalman filter requires 

knowledge of the mathematics behind the system, which we know is very difficult to obtain for 

highly complex processes such as the RO desalination system with several unknown disturbances, 

and the physical phenomenon such as membrane fouling. Artificial Neural Networks (ANNs) have 

proven to be very good function approximators and do not need any mathematical model, but the 

input-output data of the system [13]. There have been applications of ANNs for the MPC control 

[14-16], especially the Multilayer Perceptron (MLP). The MLP has some limitations to time 

variant systems, because the learned results are static input –output maps. Furthermore, the 

prediction steps of the MLP are limited [17]. 

In [18-19], Recurrent Neural Networks (RNNs) were introduced into the structure of the MPC, 

because they can capture the system dynamics and provide long-range predictions [20]. It is well-

known that RNNs have issues with vanishing and exploding gradients, which makes their training 

difficult sometimes, therefore we propose to use a special form of RNN, i.e., the Long Short Term 

Memory (LSTM).  

Even though, it is not new to combine MPC with recurrent neural networks [21-23], the application 

of LSTM as the predictive model for the MPC for desalination processes is hardly found in 

literature. This fact motivated us to put our focus on system identification using LSTM with a view 

towards closed-loop control with MPC for control of a RO desalination plant. The new 

contributions of this paper are the following: 

• Introduction of LSTM as the predictive model in MPC to capture nonlinearities 

• The combined structure of LSTM and MPC is new to RO desalination control 

The remainder of the paper is outlined as follows. In Section 2 the model of the RO desalination 

plant and some scenarios for assessing the performance of the control system in closed loop will 

be described. Following this, in Section 3, a section about the methods and materials will be given, 

in which the method of system identification using a LSTM and the problem formulation for the 

MPC using the identified LSTM as the prediction model will be described. Finally, the results of 

the system identification and the closed loop simulations control performance and discussions will 

be given in Section 4. 

2. RO desalination plant model and control scenarios 

In this section, the model of the RO desalination plant and some scenarios for assessing the 

performance of the control system in closed loop will be described. 

2.1 RO desalination plant model 

A RO desalination plant shown in Figure 1 is used as the nonlinear plant on which the LSTM-

based Model predictive control algorithm is applied to control the nonlinear process. The 

configuration of the system includes two tanks: a feed tank, and another tank for draining permeate. 

Furthermore, the plant includes reverse osmosis unit and a high pressure pump. A high-pressure 

pump is used to pump the water from the feed tank to the pressure (𝑃𝑓) into the RO unit. From the 

inflows and outflows of the feed tank, it is obvious that the feed water total dissolved solids (feed 

TDS) – feed water concentration (𝐶𝑓) is changing constantly, because some TDS leave with 

permeate (𝐶𝑝), some TDS are lost due to adhesion on the membrane surface and some TDS (𝐶𝑖𝑛) 
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enter the system with the filling water (𝑄𝑖𝑛) for the feed water tank. The permeate concentration 

(𝐶𝑝) and the brine concentration (𝐶𝑏) and the volumetric flow rate of permeate (𝑄𝑝) and brine (𝑄𝑏) 

at the outlet of the membrane module define the operating conditions of the RO unit itself and they 

can be controlled by adjusting the feed pressure at the RO unit inlet. 

 
Figure 1. Reverse osmosis desalination plant. 

From Figure 1, the mass and the salt balances for the feed tank are given by the following 

equations: 

𝑑𝑄𝑓

𝑑𝑡
= −𝑀𝑝      (1) 

𝑑𝑄𝑓𝑥𝑓

𝑑𝑡
= −𝑀𝑝𝑥𝑝        (2) 

Expanding equation 2 gives, 

    𝑄𝑓
𝑑𝑥𝑓

𝑑𝑡
+ 𝑥𝑓

𝑑𝑄𝑓

𝑑𝑡
= 𝑀𝑝𝑥𝑝      (3) 

Substituting equation (1) into equation (3), equation 4 is obtained to: 

𝑄𝑓
𝑑𝑥𝑓

𝑑𝑡
+ 𝑥𝑓(−𝑀𝑝) = 𝑀𝑝𝑥𝑝     (4) 

𝑑𝑥𝑓

𝑑𝑡
= (−𝑀𝑝𝑥𝑝 + 𝑥𝑓𝑀𝑝)/𝑄𝑓     (5) 

Finally, the feed tank can be described by equations (1) and (5). 

The same can be done to characterize the permeate tank to get the following two equations of mass 

and salt balances: 

𝑑𝑄𝑝

𝑑𝑡
= 𝑀𝑝       (6) 

𝑑𝑄𝑝𝑡𝑥𝑝𝑡

𝑑𝑡
= 𝑀𝑝𝑥𝑝      (7) 

Substituting as we did previously, the two equations that describe the permeate tank can be 

obtained to Equations (6) and (8) 

𝑑𝑥𝑝𝑡

𝑑𝑡
= (𝑀𝑝𝑥𝑝 + 𝑥𝑝𝑡𝑀𝑝)/𝑄𝑝𝑡     (8) 

The differential equations 1, 5, 6 and 8 coupled with theories of El-Dessouky and Ettouney in 

equations 9-14 can be used to describe the RO system and give a complete characterization of the 
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plant [24]. 

The salt passage rate through the reverse osmosis membrane 𝑀𝑠[ 𝑘𝑔/𝑠]can be expressed as in 

Equation 9. 

𝑀𝑠 =  𝐾𝑠𝐴𝑒𝑚𝑇𝑠(𝛽𝐶 − 𝐶𝑝) × 1000    (9) 

 𝐶 = (𝑀𝑓𝐶𝑓 + 𝑀𝑏𝐶𝑏)/(𝑀𝑓 + 𝑀𝑏)    (10) 

where 𝐾𝑠[ 𝑚3/𝑚2𝑠] is the salt permeability coefficient at the reference temperature 𝑇𝑟𝑒𝑓[°𝐶], the 

total  membrane  area is denoted by 𝐴𝑒𝑚[ 𝑚2], 𝛽 is  the concentration  polarization  factor, 𝑇𝑠 is  

the temperature correction factor for salt permeability, 𝐶[ 𝑝𝑝𝑚] is the net concentration,  and 

𝐶𝑝[ 𝑝𝑝𝑚]  is  the  permeate  concentration. 

The permeate flow rate (water passage rate) 𝑀𝑝 [
𝑘𝑔

𝑠
]required in Equation 1 is given by Equation 

11 is a function of the membrane differential pressure ∆𝑃[ 𝑘𝑃𝑎] and the net osmotic pressure 

∆𝜋[ 𝑘𝑃𝑎]. 

𝑀𝑝 =  𝐾𝑤𝐴𝑒𝑚𝑇𝑚(∆𝑃 − 𝛽∆𝜋)𝜌𝑤     (11) 

where 𝐾𝑤[ 𝑚3/𝑚2𝑠 𝑘𝑃𝑎] is the water permeability coefficient at the reference temperature 

𝑇𝑟𝑒𝑓[°𝐶], 𝑇𝑚 is the temperature correction factor for water  permeability,  and 𝜌𝑤[ 𝑘𝑔/𝑚3] is the 

permeate density. 

The concentration of the permeate 𝐶𝑝[𝑝𝑝𝑚] and the brine 𝐶𝑏[𝑝𝑝𝑚]  are given by Equations 12 

and 14, respectively. 

𝐶𝑝 = 𝐾𝑠𝐶𝑏/(
𝐽

exp(
𝐽

𝑘
)

+ 𝐾𝑠)     (12) 

𝐽 =
∆𝑃−∆𝜋

𝜂(𝑅𝑚+ 𝑅𝑐)
=

𝑄𝑝

𝐴𝑒𝑚
     (13) 

𝐶𝑏 =
𝐶𝑓𝑀𝑓−𝐶𝑝𝑀𝑝

𝑀𝑏
          (14) 

where 𝐽[𝑚/𝑠]  is  the  permeate  flux, 𝑘[𝑚/𝑠]  is  the  mass transfer coefficient, 𝜂[𝑘𝑃𝑎. 𝑠] is the 

seawater dynamic viscosity, 𝑅𝑐[𝑚−1] is the cake layer resistance, and 𝑅𝑚[𝑚−1]is the intrinsic 

membrane resistance. 

2.2 Control scenarios 

Since this study has the main focus on process control, the system performance should be evaluated 

in closed loop control, where the system will be tracking a setpoint. So, the objective of the 

controller is to bring the RO desalination system quickly and smoothly to target set-point of the 

permeate flow rate and keep the permeate concentration under 𝑀𝑝,𝑑 by adjusting the feed pressure. 

Furthermore, it is important to compare the closed-loop performance of the LSTM-based MPC 

against a classical non-linear MPC controller that utilizes the true RO desalination plant model, as 

described in Equations (1)–(14), directly.  

3. Methods and Materials 

The procedure for using a LSTM as the predictive model in the MPC comprises of several steps 

starting from 1) generating a dataset by acquiring data from the system using perturbations of the 

manipulated variables, here in our case, the feed pressure; 2) dividing the dataset into training and 

validation sets and training the LSTM on the training dataset while testing the network on the 



Karimanzira and Rauschenbach                           Water and Desalination Research Journal                         Vol. 4, No. 1; 2020           

  

  

5 
 

validation dataset for early stopping. There are some hyperparameters which need to be selected 

to find the best performance. This can be done manually, whereby several network configurations 

are trained and the best performing network selected, or one can use Bayesian optimization to find 

the parameters automatically [25]; 3) integrating the LSTM with the best performance with the 

MPC and 4) finally run closed loop simulations with LSTM-based MPC to evaluate its control 

performance. 

3.1 LSTM for system identification task 

The task of system identification is main focus of this section and comprises of approximating the 

RO desalination system as described by Equations (1)–(14). The p-step ahead prediction issue is 

supposed to be of vital important interest for the control using MPC.  Deep neural networks are 

universal function approximators and can be used to capture the nonlinear dynamics of systems. 

They are relatively simple to obtain and evaluate in real-time. To them belongs the LSTMs that 

can better capture temporal dependencies in the dynamical system. Especially for predictive 

control, the LSTMs are particularly useful. They can be used to make the required p-step ahead 

predictions of state variables, based on the fact that the prediction for time-step p depends solely 

on the current state and all control actions in time-step 𝑘 ∈ {0, . . . , 𝑝 − 1}. The time-step 𝑝 − 1 

predictions used in the time-step p prediction are equally dependent on the current state and all 

control behaviour in time-step 𝑘 ∈ {0, . . . , 𝑝 − 2}, etc. 

Figure 2 shows the LSTM structure for the p-step ahead prediction problem. It is made out of 

repeating cells with four interacting components forming each layer, and in our case each cell 

represent a time-step, so that the state of the cell representing time-step 𝑘 ∈ {0, . . . , 𝑝 − 1} serves 

as the input for a cell representing time-step 𝑘 +  1. Each cell contains user-specifiable N number 

of hidden nodes that encode the state representation.  These cells use several gating functions, like 

the ’forget’, ’input’ and ’output’ gating functions, that serve to modulate the propagation of signals 

between cells. This cell structure avoids the gradient vanishing or exploding problem. 

 
Figure 2. a) LSTM structure for the p-step ahead prediction problem and b) LSTM internal model structure with the three gates- 

forget gate, input gate and output gate. 

 

The basic LSTM cell structure (Figure 2 b) is mathematically expressed as follows in Equations 

(15)–(20) below: 
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ℎ𝑘 =  𝑜𝑘 ∗ tanh (𝐶𝑘)      (15) 

𝐶𝑘 = 𝑓𝑘 ∗ 𝐶𝑘−1 + 𝑖𝑘 ∗ �̃�𝑘     (16) 

�̃�𝑘 = 𝑡𝑎𝑛ℎ (𝑊𝐶[ℎ𝑘−1, 𝑢𝑘]′ +  𝑏𝑐)    (17) 

𝑖𝑘 = 𝜎(𝑊𝑖. [ℎ𝑘−1, 𝑢𝑘]′ + 𝑏𝑖  )    (18) 

𝑓𝑘 = 𝜎(𝑊𝑓. [ℎ𝑘−1, 𝑢𝑘]′ +  𝑏𝑓 )    (19) 

𝑜𝑘 = 𝜎(𝑊𝑜 . [ℎ𝑘−1, 𝑢𝑘]′ +  𝑏𝑜)    (20) 

𝑦𝑘 = 𝛷(ℎ𝑘 )        (21) 

where 𝑘 ∈ ℤ+ is the time index, ℎ𝑘 ∈ ℝ𝑁 the hidden state variable, �̂�𝑘 ∈ ℝ2 is the cell output 

which corresponds to the state vector prediction for time-step k, and 𝑢𝑘 ∈ ℝ2  the input variable. 

𝑓𝑘 ∈ [0, 1], 𝑖𝑘 ∈ [0, 1] and 𝑜𝑘 ∈ [0, 1] are the ‘forgetting’, ‘input’ and ‘output’ gates respectively, 

and are characterized by their respective weight matrices and bias vectors, with 𝜎: ℝ𝑁 → [0, 1]𝑁 

an activation function. The input gate controls the degree to which the cell state, represented by 

Equation (16) and distinct from the hidden state variable, is affected by candidate information, and 

the output gate controls how this cell state affects other cells. The forget gate modulates the self-

recurrent connection of the cell Equation (19), allowing it thus to partially remember the previous 

cell state in a fashion similar to traditional RNNs. ∗refers to a point-wise multiplication. ℎ0 is 

initialised in this study by using 𝑦0. 

The regressors required to predict �̂�𝑘 ∈ {1, . . . , 𝑝} are henceforth represented by 𝜙𝑘: =
 {𝑦0, 𝑢0, . . . , 𝑢𝑘−1}, and they are introduced into the LSTM in a fashion illustrated in Figure 2a. 

Equation (22) below serves as a shorthand to describe the LSTM: 

�̂�𝑘 = 𝑓𝐿𝑆𝑇𝑀(𝜙𝑘 ), 𝑘 ∈ {1, . . . , 𝑝}    (22) 

An LSTM is characterized by the values of 𝑊𝑓, 𝑊𝑖, 𝑊0, 𝑊𝑐, 𝑏𝑐, 𝑏𝑖 and 𝑏𝑓 for all layers, and these 

values constitute the set of parameters. These parameters are learnt from training data by 

minimizing the predictive error of the model on the training set as determined through a user-

specified loss function. The learning process is performed through the back-propagation through 

time (BPTT) algorithm that estimates the gradient of the loss function as a function of the weights, 

and an optimization algorithm that uses the calculated gradient to adjust the existing weights. The 

adaptive moment estimation algorithm (Adam) [26] is an example of an optimization algorithm 

that is widely used. 

3.2 Data acquisition 

For training the LSTM, a dataset which covers the whole operating range of the RO desalination 

plant was collected by perturbation of the manipulated variable, the feed pressure and recording 

the dynamic system response. A pre-defined sequence of the manipulated variable, 

𝑃𝑓,𝑘, 𝑘𝜖{0, … , 𝑇𝐾 − 1} is introduced into the system and the dynamic response 𝑀𝑝,𝑘, 𝑘𝜖{0, … , 𝑇𝐾 −

1} , 𝑄𝑝,𝑘, 𝑘𝜖{0, … , 𝑇𝐾 − 1} is recorded. Such a signal for the feed pressure and the dynamic 

response for permeate flow rate 𝑀𝑝 and permeate concentration 𝑥𝑝, total permeate quantity 𝑄𝑝 and 

permeate concentration 𝐶𝑝 are shown in Figure 3 and Figure 4a and b, respectively. 𝑇𝐾 denotes the 

final time-step for the perturbation experiment. The perturbation are sampled at Δ𝑡. 𝑄𝑝,𝑘, is the 

measured system output at time-step 𝑘 after 𝑃𝑓,𝑘−1, has been applied to the system for a period of 

Δ𝑡. These correspondences of the input and output variables are referred to in machine learning 

terminology as labels, and the data set is thereafter constructed from both the experimental 
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sequences and their associated labels. For the 𝑝-step ahead prediction problem, each data point 

thus takes the form {𝑦𝑘, 𝑢𝑘, 𝑢𝑘+1, … , 𝑢𝑘+𝑝−1} with the associated label 

{𝑦𝑘+1, … , 𝑦𝑘+𝑝}, 𝑘𝜖{0, … , 𝑇𝐾 − 𝑝}. 𝑇𝐾 − 𝑝 data points can thus be extracted from each 

experimental sequence.  

The input to the system, the feed water concentration is an uncertainty. Therefore, Gaussian noise 

was added to its signal before it was used to excite the system (Figure 3). 

Using the normal approach in machine learning, before training the LSTM, the labeled dataset is 

split into three parts with one part for training (data used for adapting the network weights), one 

part for validation and the last part for testing.  

 

 

Figure 3. Perturbating the manipulated variable, feed pressure. The feed concentration is modeled as a disturbance. 
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Figure 4. Dynamic system response to the perturbation signal in Figure 3. a) the permeate flow rate and the permeate 

concentration. b) the total permeate produced and the total permeate tank concentration. 

 

3.3 Nonlinear model predictive control problem 

The structure of the model predictive controller for a RO desalination system is shown in Figure 

5. Briefly explained, the model predictive controller (MPC) decide 𝑚 control moves for the future, 

{𝑢0, . . . 𝑢𝑚−1}, that minimizes an objective function over a finite prediction horizon of 𝑝 steps by 

utilizing the dynamic system predictions for those 𝑝 steps, {�̂�1, . . . , �̂�𝑝}. Typically, the objective 

function is chosen to penalize large control effort, which means higher power consumption for the 

actuator, and discrepancies between the state vector and the set-point at each time instance. 

Constraints on input and output may also be factored into the MPC formulation. Since MPC 

performance depends on the quality of the system's predictions, a reasonably accurate model 

obtained through system identification is crucial. 

 

 
Figure 5. Schematic representation of a model predictive controller with full state feedback. 

The Equations (23)–(26) below describe the MPC problem 

min
{∆𝑢0,∆𝑢1,⋯,∆𝑢𝑚−1}

{∑ (�̂�𝑘 − 𝑦𝑘
∗)′𝑄𝑦(�̂�𝑘 − 𝑦𝑘

∗)𝑝
𝑘=1 + ∑ ∆𝑢𝑘

′ 𝑄𝑢∆𝑢𝑘
𝑚−1
𝑘=0 }𝑠. 𝑡.    (23) 

�̂�𝑘 = 𝑓𝐿𝑆𝑇𝑀 (𝜙𝑘), 𝑘 ∈ {1, . . . , 𝑝}    (24) 

𝑢𝑘 ∈ [𝑢𝑚𝑖𝑛,𝑘, 𝑢𝑚𝑎𝑥,𝑘], 𝑘 ∈ {0, . . . , 𝑚 − 1}    (25) 
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∆𝑢𝑘 ∈ [∆𝑢𝑚𝑖𝑛,𝑘, ∆𝑢𝑚𝑎𝑥,𝑘], 𝑘 ∈ {0, . . . , 𝑚 − 1}   (26) 

where 𝑝 ∈ ℤ+ is the prediction horizon, 𝑚 ∈  {1, . . . , 𝑝} the control horizon, �̂�𝑘 ∈ ℝ2 the 

prediction of the state vector for the discrete-time step 𝑘 obtained from the LSTM, 𝑓𝐿𝑆𝑇𝑀 described 

in Equation (16), 𝑦𝑘
∗ ∈ ℝ2 the set-point at time-step 𝑘, 𝑢𝑘 ∈ ℝ2 the manipulated vector for time-

step 𝑘, ∆𝑢𝑘 ≅ 𝑢𝑘 − 𝑢𝑘−1 the discrete-time rate of change of the manipulated vector which 

corresponds to the control action size at time-step 𝑘, (𝑄𝑦, 𝑄𝑢) ∈ (ℝ2𝑥2)2 symmetric positive semi-

definite weight matrices, and (𝑢𝑚𝑖𝑛,𝑘, 𝑢𝑚𝑎𝑥,𝑘, ∆𝑢𝑚𝑖𝑛,𝑘, ∆𝑢𝑚𝑎𝑥,𝑘)  ∈  (ℝ2)4 the lower and upper 

limits for  ∆𝑢 and the rate of change of ∆𝑢 at time-step 𝑘. 

Within this formulation, no changes within actuator position are assumed beyond the time-stage 

𝑚 − 1, i.e., ∆𝑢𝑚−1 = ∆𝑢𝑚+𝑘 = 0, 𝑘 ∈ {0, . . . , 𝑝 − 𝑚 − 1}. 

In general this problem of optimization is not convex and therefore does not have special structures 

suitable for global optimality. Therefore, this is a Non-Linear Programming (NLP) problem, and 

it can be solved with modern off-the-shelf solvers. For every step of the time, this problem is 

solved to yield the optimal control chain for that time-step, {∆𝑢0 ∗, . . . , ∆𝑢 ∗ 𝑚 − 1}. The first 

element, ∆u0∗, is applied to the system until the next instant of sampling, where the problem is 

again resolved to yield another optimal control sequence. This process is then repeated in the form 

of a moving horizon. The complete procedure of the model predictive control is shown in Table 1. 

Table 1. NMPC Algorithm. 

Given: Model 𝑓, initial conditions 𝑥(0), prediction horizon 𝑝, control horizon 𝑚, sampling time Δ𝑡, and 

weighting matrices 𝑄 and 𝑅 

Step 1: At the current sampling time 𝑡𝑘, set 𝑥(𝑡𝑘−1) ← 𝑥(𝑡𝑘) 

Step 2: Solve Equation 23-26 for a sequence of m optimal input variables {𝑈(1), 𝑈(2), … , 𝑈(𝑚)} 

Step 3: Set 𝑢(𝑡_𝑘) ← 𝑈(1) and inject the input to the plant 

Step 4: At 𝑡𝑘+1, obtain the plant measurement 𝑦𝑚 

Step 5: Corresponding to 𝑦𝑚, estimate the states 𝑥∗(𝑡𝑘+1) 

Step 6: set 𝑡𝑘 ← 𝑡𝑘+1 

Step 7: Shift the prediction horizon 𝑝 forward and repeat Step 1 

 

4. Results and Discussion 

The results will be discussed in two parts, the first part is about the results of the system 

identification and the second part describes the closed loop results for the MPC. 

4.1 Model identification results 

To measure the LSTM model predictive capability, we used the mean absolute error (MAE), the 

root mean square error (RMSE) as well as the correlation coefficient ρ. The model is implemented 

in Python environment on a PC with Intel(R) Core(TM) E5-2620 CPU, 62 GB memory. The 

training for 10 epochs took 1.45s and the prediction for the test data of 1871 data points, about 

0.02s and did not show significant improvement after five epochs. Fig. 6 a-d shows the validation 

MAE loss functions for the permeate flow rate, permeate concentration, total permeate flow and 

the total permeate concentration for 10 epochs. A sharp drop in the MAE in the first a few iterations 

is shown. The training cycles stopped after 10 epochs with a smallest validation MAE value for 

the permeate flow rate, permeate concentration, total permeate flow and the total permeate 

concentration of 0.030, 0.0355, 0.0.0052 and 0.0039, respectively.  
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Figure 6. Loss functions of the (a) permeate flow rate 𝑀𝑝, (b) permeate concentration 𝑋𝑝, (c) total permeate flow quantity 𝑄𝑝,(d) 

total permeate concentration 𝐶𝑝. 

 

The hyperparameters in the prediction model such as the learning rate, batch size, dropout filtersize 

etc., need to be explored carefully to achieve the best prediction results. We utilize Bayesian 

optimization to search for these hyperparameters efficiently. From the Bayesian optimization, the 

best LSTM for system identification was found with the key parameters shown in Table 2. 

Table 2. Key hyperparameters of the LSTM. 

Hyperparameter Value 

Number of LSTM Layers 3 

Number of hidden units per layer  50 

Number of Dense layers 1 

Dropout rate 0.2 

  

Batch size = 250 250 

Learning rate of the optimizer  0.001 
 

Table 3 illustrates the model performance of the proposed method. Benefiting from the temporal 

convolutional architecture, dilated convolution and the residual unit, the method achieves 

remarkable predictive accuracy for the permeate flow rate, total permeate flow, permeate 

concentration and the total permeate concentration. The smaller the RMSE of the model on the 

test data, the better its general predictive power.  
 

Table 3. Model performance on the test data based on correlation coefficient and root mean square error (RMSE).  

Parameter Root mean square error Correlation 

coefficient 

Permeate flow rate [L/min] 0.0083 0.996 

Permeate  concentration[g/L] 0.0012 0.983 

Permeate flow quantity [L] 0.0023 0.996 

Total permeate tank concentration [g/L]   0.0052 0.983 
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Figures 7a, 8a, 9a and 10a reveals a good fit of the LSTM to the training data for the permeate 

flow rate, total permeate flow, permeate concentration and the total permeate concentration, 

respectively, and testifies to the model’s ability to reflect highly dynamic outputs from highly 

dynamic training data. The validation to determine the predictive capability of the model on a 

different data set was performed and Figures 7b, 8b, 9b and 10b  show that the model succeeded 

in capturing the general trends for previously unseen test data for the permeate flow rate, total 

permeate flow, permeate concentration and the total permeate concentration, respectively. 
 

Figure 7. System identification performance of the optimised LSTM for the permeate flow rate, 𝑀𝑝. (a) Training performance of 

the optimised LSTM. (b) Validation performance of the optimised LSTM on test data. 

 

 
(a) 

 
(b) 
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Figure 8. System identification performance of the optimised LSTM for the total permeate flow, 𝑀𝑝. (a) Training performance of  

the optimized LSTM. (b) Validation performance of the optimised LSTM on test data. 

 
(a) 

 
(b) 
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(a) 

 
(b) 

Figure 9. System identification performance of the optimised LSTM for the permeate concentration, 𝑋𝑝. (a) Training 

performance of the optimized LSTM. (b) Validation performance of the optimised LSTM on test data. 
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(a) 

 
(b) 

Figure 10. System identification performance of the optimised LSTM for the total permeate concentration, 𝐶𝑝. (a) Training 

performance of the optimized LSTM. (b) Validation performance of the optimised LSTM on test data. 

 

4.2 LSTM-based MPC Closed-Loop Control Performance 

The MPC controller in this study was implemented in Python version 3.6.5 through the 

scipy.optimize.minimize function, and the sequential least squares quadratic programming 

(SLSQP) algorithm was selected as the option for this solver. 

The parameters for the MPC controller were set as shown in Table 4 and its main objective was to 
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track a target set point trajectory as fast and as smooth as possible. The LSTM-based system was 

compared to a system which uses the true model of the RO desalination system and the results will 

be discussed in the following. 

Table 4. Parameter settings for the model predictive controller. 

Parameter Description Value 

ns Simulation Length 100 

p Prediction Horizon 30 

m Control Horizon 10 

𝑢𝑚𝑖𝑛,𝑘  lower and upper bounds for the 

control action at time-step k 

2500kPa 

 𝑢𝑚𝑎𝑥,𝑘  7000kPa 

∆𝑢𝑚𝑖𝑛,𝑘  the rate of change of the control 

action at time-step k 

10kPa 

∆𝑢𝑚𝑎𝑥,𝑘  100kPa 

𝑄𝑦   The weight matrices for the 

controller, Qy and Qu 

1 

𝑄𝑢  20 

𝑀𝑝,𝑑  Upper limit of the permeate flow 

concentration 

3g/L 

 

The response graphs in Figure11 shows that the LSTM-based MPC strategy successfully tracks 

the signal showing the robustness and successful set point tracking ability of the controller 

employed to RO desalination system. To be able to compare the performance of the two controllers 

quantitatively, we designed a performance metric 𝐼 given in Equation 28. This metric gives an 

indication of how good the LSTM-based MPC is compared to the MPC, which uses the full RO 

desalination system model as the predictive model. 

𝐽 = ∑ ((�̂�𝑘 − 𝑦𝑘
∗)′𝑄𝑦(�̂�𝑘 − 𝑦𝑘

∗)𝑛𝑠
𝑘=1 + ∆𝑢𝑘

′ 𝑄𝑢∆𝑢𝑘)    (27) 

𝐼 = (1 −
𝐽𝐿𝑆𝑇𝑀−𝐽

𝐽
) ∗ 100%      (28) 

 
Figure 11. Closed loop results of the two model predictive controllers. Measured CV is the result of the MPC with the true model 

and measured CV-LSTM is the result of the MPC with the LSTM as predictive model. 
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For the target set point trajectory shown in Figure 11, the performance metric 𝐼 for the LSTM-

based MPC was 𝐼 = 98.7% which shows slight deviations but a very good performance. 

The results of the permeate concentration in Figure 12 shows that the model predictive controller 

could achieve close set point tracking (Figure 11), while staying in the required constraints of the  

permeate concentration 

 

 

Figure 12. Closed loop results for the permeate concentration, where the red line is the maximum allowed concentration. 

 

5. Conclusions 

A nonlinear model predictive controller for RO desalination systems has been presented. To take 

model uncertainties, constraints, nonlinear dynamics into account, the system utilizes a LSTM 

Network as the predictive model. The LSTM can capture complex nonlinear dynamic behavior 

and provide long-range predictions even in the presence of disturbances. The main aim was to 

control the permeate flow rate obeying the constraints on the permeate concentration by 

manipulating the feed pressure. The LSTM based MPC was tested on reference signals which 

exhibits, the possible nonlinear process dynamics occurring inside a real RO desalination plant. It 

can be seen from the response graphs that the NMPC strategy successfully tracks the reference 

signal. These results illustrates and proves the tracking ability of LSTM-based MPC controller. 

Almost offset free and very close set point tracking is obtained using the strategy. 
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